1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
use std::error::Error;

/// Struct representing the parameters for a decision tree.
#[derive(Clone, Debug)]
pub struct TreeParams {
    pub min_samples_split: u16,
    pub max_depth: Option<u16>,
}

impl Default for TreeParams {
    /// Creates a new instance of `TreeParams` with default values.
    fn default() -> Self {
        Self::new()
    }
}

impl TreeParams {
    /// Creates a new instance of `TreeParams` with default values.
    pub fn new() -> Self {
        Self {
            min_samples_split: 2,
            max_depth: None,
        }
    }

    /// Sets the minimum number of samples required to split a node.
    ///
    /// # Arguments
    ///
    /// * `min_samples_split` - The minimum number of samples to split.
    ///
    /// # Errors
    ///
    /// Returns an error if `min_samples_split` is less than 2.
    pub fn set_min_samples_split(&mut self, min_samples_split: u16) -> Result<(), Box<dyn Error>> {
        if min_samples_split < 2 {
            return Err("The minimum number of samples to split must be greater than 1.".into());
        }
        self.min_samples_split = min_samples_split;
        Ok(())
    }

    /// Sets the maximum depth of the decision tree.
    ///
    /// # Arguments
    ///
    /// * `max_depth` - The maximum depth of the tree.
    ///
    /// # Errors
    ///
    /// Returns an error if `max_depth` is less than 1.
    pub fn set_max_depth(&mut self, max_depth: Option<u16>) -> Result<(), Box<dyn Error>> {
        if max_depth.is_some_and(|depth| depth < 1) {
            return Err("The maximum depth must be greater than 0.".into());
        }
        self.max_depth = max_depth;
        Ok(())
    }

    /// Returns the minimum number of samples required to split a node.
    pub fn min_samples_split(&self) -> u16 {
        self.min_samples_split
    }

    /// Returns the maximum depth of the decision tree.
    pub fn max_depth(&self) -> Option<u16> {
        self.max_depth
    }
}

/// Struct representing the parameters for a decision tree classifier.
#[derive(Clone, Debug)]
pub struct TreeClassifierParams {
    pub base_params: TreeParams,
    pub criterion: String,
}

impl Default for TreeClassifierParams {
    /// Creates a new instance of `TreeClassifierParams` with default values.
    fn default() -> Self {
        Self::new()
    }
}

impl TreeClassifierParams {
    /// Creates a new instance of `TreeClassifierParams` with default values.
    pub fn new() -> Self {
        Self {
            base_params: TreeParams::new(),
            criterion: "gini".to_string(),
        }
    }

    /// Sets the minimum number of samples required to split a node.
    ///
    /// # Arguments
    ///
    /// * `min_samples_split` - The minimum number of samples to split.
    ///
    /// # Errors
    ///
    /// Returns an error if `min_samples_split` is less than 2.
    pub fn set_min_samples_split(&mut self, min_samples_split: u16) -> Result<(), Box<dyn Error>> {
        self.base_params.set_min_samples_split(min_samples_split)
    }

    /// Sets the maximum depth of the decision tree.
    ///
    /// # Arguments
    ///
    /// * `max_depth` - The maximum depth of the tree.
    ///
    /// # Errors
    ///
    /// Returns an error if `max_depth` is less than 1.
    pub fn set_max_depth(&mut self, max_depth: Option<u16>) -> Result<(), Box<dyn Error>> {
        self.base_params.set_max_depth(max_depth)
    }

    /// Sets the criterion used for splitting nodes in the decision tree.
    ///
    /// # Arguments
    ///
    /// * `criterion` - The criterion for splitting nodes.
    ///
    /// # Errors
    ///
    /// Returns an error if `criterion` is not "gini" or "entropy".
    pub fn set_criterion(&mut self, criterion: String) -> Result<(), Box<dyn Error>> {
        if !["gini", "entropy"].contains(&criterion.as_str()) {
            return Err("The criterion must be either 'gini' or 'entropy'.".into());
        }
        self.criterion = criterion;
        Ok(())
    }

    /// Returns the minimum number of samples required to split a node.
    pub fn min_samples_split(&self) -> u16 {
        self.base_params.min_samples_split
    }

    /// Returns the maximum depth of the decision tree.
    pub fn max_depth(&self) -> Option<u16> {
        self.base_params.max_depth
    }

    /// Returns the criterion used for splitting nodes in the decision tree.
    pub fn criterion(&self) -> &str {
        &self.criterion
    }
}