1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
use crate::{
    data::dataset::{Dataset, RealNumber},
    metrics::errors::RegressionMetrics,
};
use nalgebra::{DMatrix, DVector};
use std::error::Error;

/// Represents a linear regression model.
///
/// The `LinearRegression` struct implements a linear regression model for predicting a target variable based on one or more input features.
/// It uses the least squares method to estimate the weights of the linear model.
///
/// # Type Parameters
///
/// * `T`: The numeric type used for calculations. Must implement the `RealNumber` trait.
///
/// # Fields
///
/// * `weights`: The weights of the logistic regression model, with the first being the bias weight.
///
/// # Examples
///
/// ```
/// use rusty_ai::regression::linear::LinearRegression;
/// use rusty_ai::data::dataset::Dataset;
/// use nalgebra::{DMatrix, DVector};
///
/// // Create a new linear regression model
/// let mut model = LinearRegression::<f64>::new();
///
/// // Fit the model to a dataset
/// let x = DMatrix::from_row_slice(3, 2, &[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
/// let y = DVector::from_vec(vec![1.5, 2.5, 3.5]);
/// let dataset = Dataset::new(x, y);
/// let learning_rate = 0.01;
/// let max_steps = 1000;
/// let epsilon = Some(0.001);
/// let progress = Some(100);
/// let result = model.fit(&dataset, learning_rate, max_steps, epsilon, progress);
///
/// // Make predictions using the trained model
/// let x_test = DMatrix::from_row_slice(2, 2, &[1.0, 2.0, 3.0, 4.0]);
/// let predictions = model.predict(&x_test);
/// assert!(predictions.is_ok());
/// ```

#[derive(Clone, Debug)]
pub struct LinearRegression<T: RealNumber> {
    weights: DVector<T>,
}

impl<T: RealNumber> RegressionMetrics<T> for LinearRegression<T> {}

impl<T: RealNumber> Default for LinearRegression<T> {
    /// Creates a new `LinearRegression` model with default weights.
    ///
    /// The default weights are initialized to 1.0 for each feature, including the bias weight.
    fn default() -> Self {
        Self::new()
    }
}

impl<T: RealNumber> LinearRegression<T> {
    /// Creates a new `LinearRegression` model with default weights.
    ///
    /// The default weights are initialized to 1.0 for each feature, including the bias weight.
    pub fn new() -> Self {
        Self {
            weights: DVector::<T>::from_element(3, T::from_f64(1.0).unwrap()),
        }
    }

    /// Creates a new `LinearRegression` model with custom parameters.
    ///
    /// # Arguments
    ///
    /// * `dimension`: The dimension of the input features. If `None`, the dimension will be inferred from the provided weights.
    /// * `weights`: The initial weights for the linear regression model. If `None`, default weights will be used.
    ///
    /// # Returns
    ///
    /// Returns a `Result` containing the `LinearRegression` model if the parameters are valid, or an error message if the parameters are invalid.
    ///
    /// # Errors
    ///
    /// An error will be returned if:
    /// * Both `dimension` and `weights` are `None`.
    /// * The length of `weights` is not equal to `dimension + 1` to account for the bias weight.
    pub fn with_params(
        dimension: Option<usize>,
        weights: Option<DVector<T>>,
    ) -> Result<Self, Box<dyn Error>> {
        match (dimension, &weights) {
            (None, None) => Err("Please input the dimension or starting weights.".into()),

            (Some(dim), Some(w)) if dim != w.len() - 1 => {
                Err("The weights should be longer by 1 than the dimension to account for the bias weight.".into())
            }
            _ => Ok(Self {
                weights: weights.unwrap_or_else(|| {
                    DVector::<T>::from_element(dimension.unwrap() + 1, T::from_f64(1.0).unwrap())
                }),
            }),
        }
    }

    /// Returns a reference to the weights of the linear regression model.
    pub fn weights(&self) -> &DVector<T> {
        &self.weights
    }

    /// Makes predictions using the trained linear regression model.
    ///
    /// # Arguments
    ///
    /// * `x_pred`: The input features for which to make predictions.
    ///
    /// # Returns
    ///
    /// Returns a `Result` containing the predicted target values if successful, or an error message if an error occurs during prediction.
    pub fn predict(&self, x_pred: &DMatrix<T>) -> Result<DVector<T>, Box<dyn Error>> {
        let x_pred_with_bias = x_pred.clone().insert_column(0, T::from_f64(1.0).unwrap());
        Ok(self.h(&x_pred_with_bias))
    }

    /// Fits the linear regression model to a dataset.
    ///
    /// # Arguments
    ///
    /// * `dataset`: The dataset containing the input features and target values.
    /// * `lr`: The learning rate for gradient descent.
    /// * `max_steps`: The maximum number of steps to perform during training.
    /// * `epsilon`: The convergence threshold. If the change in weights is below this threshold, training will stop.
    /// * `progress`: The number of steps at which to display progress information. If `None`, no progress information will be displayed.
    ///
    /// # Returns
    ///
    /// Returns a `Result` containing a success message if training is successful, or an error message if an error occurs during training.
    ///
    /// # Errors
    ///
    /// An error will be returned if:
    /// * The number of steps for progress visualization is 0.
    /// * The gradient turns to NaN during training.
    pub fn fit(
        &mut self,
        dataset: &Dataset<T, T>,
        lr: T,
        mut max_steps: usize,
        epsilon: Option<T>,
        progress: Option<usize>,
    ) -> Result<String, Box<dyn Error>> {
        if progress.is_some_and(|steps| steps == 0) {
            return Err(
                "The number of steps for progress visualization must be greater than 0.".into(),
            );
        }

        let (x, y) = dataset.into_parts();

        let epsilon = epsilon.unwrap_or_else(|| T::from_f64(1e-6).unwrap());
        let initial_max_steps = max_steps;
        let x_with_bias = x.clone().insert_column(0, T::from_f64(1.0).unwrap());
        while max_steps > 0 {
            let weights_prev = self.weights.clone();

            let gradient = self.gradient(&x_with_bias, y);

            if gradient.iter().any(|&g| g.is_nan()) {
                return Err("Gradient turned to NaN during training.".into());
            }

            self.weights -= gradient * lr;

            if progress.is_some_and(|steps| max_steps % steps == 0) {
                println!("Step: {}", initial_max_steps - max_steps);
                println!("Weights: {:?}", self.weights);
                println!("MSE: {:?}", self.mse_training(&x_with_bias, y));
            }

            let delta = self
                .weights
                .iter()
                .zip(weights_prev.iter())
                .map(|(&w, &w_prev)| (w - w_prev) * (w - w_prev))
                .fold(T::from_f64(0.0).unwrap(), |acc, x| acc + x);

            if delta < epsilon {
                return Ok(format!(
                    "Finished training in {} steps.",
                    initial_max_steps - max_steps,
                ));
            }
            max_steps -= 1;
        }
        Ok("Reached maximum steps without converging.".into())
    }

    fn gradient(&self, x: &DMatrix<T>, y: &DVector<T>) -> DVector<T> {
        let y_pred = self.h(x);

        let errors = y_pred - y;

        x.transpose() * errors * T::from_f64(2.0).unwrap() / T::from_usize(y.len()).unwrap()
    }

    fn h(&self, x: &DMatrix<T>) -> DVector<T> {
        x * &self.weights
    }

    fn mse_training(&self, x: &DMatrix<T>, y: &DVector<T>) -> T {
        let m = T::from_usize(y.len()).unwrap();
        let y_pred = self.h(x);

        let errors = y_pred - y;

        let errors_sq = errors.component_mul(&errors);
        errors_sq.sum() / m
    }
}

#[cfg(test)]
mod tests {
    use approx::assert_relative_eq;

    use super::*;

    #[test]
    fn test_new() {
        let model = LinearRegression::<f32>::new();
        assert_eq!(model.weights().len(), 3);
        assert!(model.weights().iter().all(|&w| w == 1.0));
    }

    #[test]
    fn test_with_params() {
        // Test with valid dimensions and weights
        let weights = DVector::from_vec(vec![1.0, 2.0, 3.0]);
        let model = LinearRegression::with_params(Some(2), Some(weights.clone()));
        assert!(model.is_ok());
        let model = model.unwrap();
        assert_eq!(model.weights, weights);
    }

    #[test]
    fn test_with_params_incorrect() {
        let weights = DVector::from_vec(vec![1.0, 2.0, 3.0]);
        let model = LinearRegression::with_params(Some(4), Some(weights));
        assert!(model.is_err());
    }

    #[test]
    fn test_with_dimension() {
        let model = LinearRegression::<f64>::with_params(Some(3), None);
        assert!(model.is_ok());
        assert_eq!(model.as_ref().unwrap().weights().len(), 4);
        assert!(model.unwrap().weights().iter().all(|&w| w == 1.0));
    }

    #[test]
    fn test_with_weights() {
        let weights = DVector::from_vec(vec![1.0, 2.0, 3.0]);
        let model = LinearRegression::with_params(None, Some(weights.clone()));
        assert!(model.is_ok());
        assert_eq!(model.unwrap().weights, weights);
    }

    #[test]
    fn test_with_nothing_provided() {
        // Test with no dimensions and no weights
        let model = LinearRegression::<f64>::with_params(None, None);
        assert!(model.is_err());
    }

    #[test]
    fn test_weights() {
        // Create a LinearRegression model with known weights
        let weights = DVector::from_vec(vec![1.0, 2.0, 3.0]);
        let model = LinearRegression::with_params(Some(2), Some(weights.clone())).unwrap();
        let model_weights = model.weights();
        assert_eq!(model_weights, &weights);
    }

    #[test]
    fn test_predict() {
        let weights = DVector::from_vec(vec![1.0, 2.0, 3.0]);
        let model = LinearRegression::with_params(None, Some(weights)).unwrap();
        let x_pred = DMatrix::from_row_slice(2, 2, &[1.0, 2.0, 3.0, 4.0]);
        let prediction = model.predict(&x_pred);
        assert!(prediction.is_ok());

        let expected = DVector::from_vec(vec![9.0, 19.0]);
        assert_eq!(prediction.unwrap(), expected);
    }

    #[test]
    fn test_gradient() {
        // Create a LinearRegression instance
        let model =
            LinearRegression::<f64>::with_params(None, Some(DVector::from(vec![1.0, 2.0, 3.0])))
                .unwrap();

        // Create input matrix and target vector
        let x = DMatrix::from_row_slice(2, 2, &[1.0, 2.0, 3.0, 4.0]);
        let y = DVector::from_vec(vec![7.0, 8.0]);
        let x_with_bias = x.clone().insert_column(0, 1.0);

        // Calculate the gradient
        let gradient = model.gradient(&x_with_bias, &y);

        // Define the expected gradient
        let expected_gradient = DVector::from_vec(vec![13.0, 35.0, 48.0]);

        // Check if the calculated gradient matches the expected gradient
        assert_eq!(gradient, expected_gradient);
    }

    #[test]
    fn test_mse_training() {
        let model =
            LinearRegression::<f64>::with_params(None, Some(DVector::from(vec![1.0, 2.0, 3.0])))
                .unwrap();
        let x = DMatrix::from_row_slice(2, 2, &[1.0, 2.0, 3.0, 4.0]);
        let y = DVector::from_vec(vec![7.0, 8.0]);

        let x_with_bias = x.clone().insert_column(0, 1.0);

        let mse = model.mse_training(&x_with_bias, &y);

        assert_relative_eq!(mse, 62.5, epsilon = 1e-6);
    }

    #[test]
    fn test_fit_with_progress_set_to_zero() {
        let mut model = LinearRegression::<f64>::new();

        // Create a dummy dataset
        let x = DMatrix::from_vec(2, 2, vec![1.0, 2.0, 3.0, 4.0]);
        let y = DVector::from_vec(vec![1.0, 2.0]);
        let dataset = Dataset::new(x, y);

        let lr = 0.1;
        let max_steps = 100;
        let epsilon = Some(0.0001);
        let progress = Some(0);

        let result = model.fit(&dataset, lr, max_steps, epsilon, progress);

        assert!(result.is_err());
        assert_eq!(
            result.unwrap_err().to_string(),
            "The number of steps for progress visualization must be greater than 0."
        );
    }

    #[test]
    fn test_fit_no_convergence() {
        let mut logistic_regression = LinearRegression::<f64>::new();
        let dataset = Dataset::new(
            DMatrix::from_row_slice(2, 2, &[1.0, 2.0, 3.0, 4.0]),
            DVector::from_vec(vec![0.0, 1.0]),
        );
        let result = logistic_regression.fit(&dataset, 0.1, 100, Some(1e-6), None);
        assert!(result.is_ok());
        assert_eq!(
            result.unwrap(),
            "Reached maximum steps without converging.".to_string()
        );
    }

    #[test]
    fn test_fit_with_convergence() {
        let mut logistic_regression = LinearRegression::<f64>::new();
        let dataset = Dataset::new(
            DMatrix::from_row_slice(2, 2, &[1.0, 2.0, 3.0, 4.0]),
            DVector::from_vec(vec![0.0, 1.0]),
        );
        let result = logistic_regression.fit(&dataset, 0.01, 100, Some(1e-2), Some(1));
        assert!(result.is_ok());
        assert_eq!(result.unwrap(), "Finished training in 4 steps.".to_string());
    }
}