1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
use crate::{
    data::dataset::{Dataset, RealNumber},
    metrics::errors::RegressionMetrics,
};
use nalgebra::{DMatrix, DVector};
use std::error::Error;

#[derive(Clone, Debug)]
pub struct LinearRegression<T: RealNumber> {
    weights: DVector<T>,
}

impl<T: RealNumber> RegressionMetrics<T> for LinearRegression<T> {}

impl<T: RealNumber> Default for LinearRegression<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: RealNumber> LinearRegression<T> {
    pub fn new() -> Self {
        Self {
            weights: DVector::<T>::from_element(3, T::from_f64(1.0).unwrap()),
        }
    }

    pub fn with_params(
        dimension: Option<usize>,
        weights: Option<DVector<T>>,
    ) -> Result<Self, Box<dyn Error>> {
        match (dimension, &weights) {
            (None, None) => Err("Please input the dimension or starting weights.".into()),

            (Some(dim), Some(w)) if dim != w.len() - 1 => {
                Err("The weights should be longer by 1 than the dimension to account for the bias weight.".into())
            }
            _ => Ok(Self {
                weights: weights.unwrap_or_else(|| {
                    DVector::<T>::from_element(dimension.unwrap() + 1, T::from_f64(1.0).unwrap())
                }),
            }),
        }
    }

    pub fn weights(&self) -> &DVector<T> {
        &self.weights
    }

    pub fn predict(&self, x_pred: &DMatrix<T>) -> Result<DVector<T>, Box<dyn Error>> {
        let x_pred_with_bias = x_pred.clone().insert_column(0, T::from_f64(1.0).unwrap());
        Ok(self.h(&x_pred_with_bias))
    }

    pub fn fit(
        &mut self,
        dataset: &Dataset<T, T>,
        lr: T,
        mut max_steps: usize,
        epsilon: Option<T>,
        progress: Option<usize>,
    ) -> Result<String, Box<dyn Error>> {
        if progress.is_some_and(|steps| steps == 0) {
            return Err(
                "The number of steps for progress visualization must be greater than 0.".into(),
            );
        }

        let (x, y) = dataset.into_parts();

        let epsilon = epsilon.unwrap_or_else(|| T::from_f64(1e-6).unwrap());
        let initial_max_steps = max_steps;
        let x_with_bias = x.clone().insert_column(0, T::from_f64(1.0).unwrap());
        while max_steps > 0 {
            let weights_prev = self.weights.clone();

            let gradient = self.gradient(&x_with_bias, y);

            if gradient.iter().any(|&g| g.is_nan()) {
                return Err("Gradient turned to NaN during training.".into());
            }

            self.weights -= gradient * lr;

            if progress.is_some_and(|steps| max_steps % steps == 0) {
                println!("Step: {}", initial_max_steps - max_steps);
                println!("Weights: {:?}", self.weights);
                println!("MSE: {:?}", self.mse_training(&x_with_bias, y));
            }

            let delta = self
                .weights
                .iter()
                .zip(weights_prev.iter())
                .map(|(&w, &w_prev)| (w - w_prev) * (w - w_prev))
                .fold(T::from_f64(0.0).unwrap(), |acc, x| acc + x);

            if delta < epsilon {
                return Ok(format!(
                    "Finished training in {} steps.",
                    initial_max_steps - max_steps,
                ));
            }
            max_steps -= 1;
        }
        Ok("Reached maximum steps without converging.".into())
    }

    fn gradient(&self, x: &DMatrix<T>, y: &DVector<T>) -> DVector<T> {
        let y_pred = self.h(x);

        let errors = y_pred - y;

        x.transpose() * errors * T::from_f64(2.0).unwrap() / T::from_usize(y.len()).unwrap()
    }

    fn h(&self, x: &DMatrix<T>) -> DVector<T> {
        x * &self.weights
    }

    fn mse_training(&self, x: &DMatrix<T>, y: &DVector<T>) -> T {
        let m = T::from_usize(y.len()).unwrap();
        let y_pred = self.h(x);

        let errors = y_pred - y;

        let errors_sq = errors.component_mul(&errors);
        errors_sq.sum() / m
    }
}

#[cfg(test)]
mod tests {
    use approx::assert_relative_eq;

    use super::*;

    #[test]
    fn test_new() {
        let model = LinearRegression::<f32>::new();
        assert_eq!(model.weights().len(), 3);
        assert!(model.weights().iter().all(|&w| w == 1.0));
    }

    #[test]
    fn test_with_params() {
        // Test with valid dimensions and weights
        let weights = DVector::from_vec(vec![1.0, 2.0, 3.0]);
        let model = LinearRegression::with_params(Some(2), Some(weights.clone()));
        assert!(model.is_ok());
        let model = model.unwrap();
        assert_eq!(model.weights, weights);
    }

    #[test]
    fn test_with_params_incorrect() {
        let weights = DVector::from_vec(vec![1.0, 2.0, 3.0]);
        let model = LinearRegression::with_params(Some(4), Some(weights));
        assert!(model.is_err());
    }

    #[test]
    fn test_with_dimension() {
        let model = LinearRegression::<f64>::with_params(Some(3), None);
        assert!(model.is_ok());
        assert_eq!(model.as_ref().unwrap().weights().len(), 4);
        assert!(model.unwrap().weights().iter().all(|&w| w == 1.0));
    }

    #[test]
    fn test_with_weights() {
        let weights = DVector::from_vec(vec![1.0, 2.0, 3.0]);
        let model = LinearRegression::with_params(None, Some(weights.clone()));
        assert!(model.is_ok());
        assert_eq!(model.unwrap().weights, weights);
    }

    #[test]
    fn test_with_nothing_provided() {
        // Test with no dimensions and no weights
        let model = LinearRegression::<f64>::with_params(None, None);
        assert!(model.is_err());
    }

    #[test]
    fn test_weights() {
        // Create a LinearRegression model with known weights
        let weights = DVector::from_vec(vec![1.0, 2.0, 3.0]);
        let model = LinearRegression::with_params(Some(2), Some(weights.clone())).unwrap();
        let model_weights = model.weights();
        assert_eq!(model_weights, &weights);
    }

    #[test]
    fn test_predict() {
        let weights = DVector::from_vec(vec![1.0, 2.0, 3.0]);
        let model = LinearRegression::with_params(None, Some(weights)).unwrap();
        let x_pred = DMatrix::from_row_slice(2, 2, &[1.0, 2.0, 3.0, 4.0]);
        let prediction = model.predict(&x_pred);
        assert!(prediction.is_ok());

        let expected = DVector::from_vec(vec![9.0, 19.0]);
        assert_eq!(prediction.unwrap(), expected);
    }

    #[test]
    fn test_gradient() {
        // Create a LinearRegression instance
        let model =
            LinearRegression::<f64>::with_params(None, Some(DVector::from(vec![1.0, 2.0, 3.0])))
                .unwrap();

        // Create input matrix and target vector
        let x = DMatrix::from_row_slice(2, 2, &[1.0, 2.0, 3.0, 4.0]);
        let y = DVector::from_vec(vec![7.0, 8.0]);
        let x_with_bias = x.clone().insert_column(0, 1.0);

        // Calculate the gradient
        let gradient = model.gradient(&x_with_bias, &y);

        // Define the expected gradient
        let expected_gradient = DVector::from_vec(vec![13.0, 35.0, 48.0]);

        // Check if the calculated gradient matches the expected gradient
        assert_eq!(gradient, expected_gradient);
    }

    #[test]
    fn test_mse_training() {
        let model =
            LinearRegression::<f64>::with_params(None, Some(DVector::from(vec![1.0, 2.0, 3.0])))
                .unwrap();
        let x = DMatrix::from_row_slice(2, 2, &[1.0, 2.0, 3.0, 4.0]);
        let y = DVector::from_vec(vec![7.0, 8.0]);

        let x_with_bias = x.clone().insert_column(0, 1.0);

        let mse = model.mse_training(&x_with_bias, &y);

        assert_relative_eq!(mse, 62.5, epsilon = 1e-6);
    }

    #[test]
    fn test_fit_with_progress_set_to_zero() {
        let mut model = LinearRegression::<f64>::new();

        // Create a dummy dataset
        let x = DMatrix::from_vec(2, 2, vec![1.0, 2.0, 3.0, 4.0]);
        let y = DVector::from_vec(vec![1.0, 2.0]);
        let dataset = Dataset::new(x, y);

        let lr = 0.1;
        let max_steps = 100;
        let epsilon = Some(0.0001);
        let progress = Some(0);

        let result = model.fit(&dataset, lr, max_steps, epsilon, progress);

        assert!(result.is_err());
        assert_eq!(
            result.unwrap_err().to_string(),
            "The number of steps for progress visualization must be greater than 0."
        );
    }

    #[test]
    fn test_fit_no_convergence() {
        let mut logistic_regression = LinearRegression::<f64>::new();
        let dataset = Dataset::new(
            DMatrix::from_row_slice(2, 2, &[1.0, 2.0, 3.0, 4.0]),
            DVector::from_vec(vec![0.0, 1.0]),
        );
        let result = logistic_regression.fit(&dataset, 0.1, 100, Some(1e-6), None);
        assert!(result.is_ok());
        assert_eq!(
            result.unwrap(),
            "Reached maximum steps without converging.".to_string()
        );
    }

    #[test]
    fn test_fit_with_convergence() {
        let mut logistic_regression = LinearRegression::<f64>::new();
        let dataset = Dataset::new(
            DMatrix::from_row_slice(2, 2, &[1.0, 2.0, 3.0, 4.0]),
            DVector::from_vec(vec![0.0, 1.0]),
        );
        let result = logistic_regression.fit(&dataset, 0.01, 100, Some(1e-2), Some(1));
        assert!(result.is_ok());
        assert_eq!(result.unwrap(), "Finished training in 4 steps.".to_string());
    }
}