1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
use std::error::Error;

use nalgebra::{DMatrix, DVector};
use rand::{rngs::StdRng, Rng, SeedableRng};
use rayon::prelude::*;

use crate::{
    data::dataset::{Dataset, RealNumber},
    metrics::errors::RegressionMetrics,
    trees::{params::TreeParams, regressor::DecisionTreeRegressor},
};

use super::params::ForestParams;

#[derive(Clone, Debug)]
pub struct RandomForestRegressor<T: RealNumber> {
    forest_params: ForestParams<DecisionTreeRegressor<T>>,
    tree_params: TreeParams,
}

impl<T: RealNumber> Default for RandomForestRegressor<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: RealNumber> RegressionMetrics<T> for RandomForestRegressor<T> {}

impl<T: RealNumber> RandomForestRegressor<T> {
    pub fn new() -> Self {
        Self {
            forest_params: ForestParams::new(),
            tree_params: TreeParams::new(),
        }
    }

    pub fn with_params(
        num_trees: Option<usize>,
        min_samples_split: Option<u16>,
        max_depth: Option<u16>,
        sample_size: Option<usize>,
    ) -> Result<Self, Box<dyn Error>> {
        let mut forest = Self::new();

        forest.set_num_trees(num_trees.unwrap_or(3))?;
        forest.set_sample_size(sample_size)?;
        forest.set_min_samples_split(min_samples_split.unwrap_or(2))?;
        forest.set_max_depth(max_depth)?;
        Ok(forest)
    }

    pub fn set_trees(&mut self, trees: Vec<DecisionTreeRegressor<T>>) {
        self.forest_params.set_trees(trees);
    }

    pub fn set_num_trees(&mut self, num_trees: usize) -> Result<(), Box<dyn Error>> {
        self.forest_params.set_num_trees(num_trees)
    }

    pub fn set_sample_size(&mut self, sample_size: Option<usize>) -> Result<(), Box<dyn Error>> {
        self.forest_params.set_sample_size(sample_size)
    }

    pub fn set_min_samples_split(&mut self, min_samples_split: u16) -> Result<(), Box<dyn Error>> {
        self.tree_params.set_min_samples_split(min_samples_split)
    }

    pub fn set_max_depth(&mut self, max_depth: Option<u16>) -> Result<(), Box<dyn Error>> {
        self.tree_params.set_max_depth(max_depth)
    }

    pub fn trees(&self) -> &Vec<DecisionTreeRegressor<T>> {
        self.forest_params.trees()
    }

    pub fn num_trees(&self) -> usize {
        self.forest_params.num_trees()
    }

    pub fn sample_size(&self) -> Option<usize> {
        self.forest_params.sample_size()
    }

    pub fn min_samples_split(&self) -> u16 {
        self.tree_params.min_samples_split()
    }

    pub fn max_depth(&self) -> Option<u16> {
        self.tree_params.max_depth()
    }

    pub fn fit(
        &mut self,
        dataset: &Dataset<T, T>,
        seed: Option<u64>,
    ) -> Result<String, Box<dyn Error>> {
        let mut rng = match seed {
            Some(seed) => StdRng::seed_from_u64(seed),
            _ => StdRng::from_entropy(),
        };

        let seeds = (0..self.num_trees())
            .map(|_| rng.gen::<u64>())
            .collect::<Vec<_>>();

        match self.sample_size() {
            Some(sample_size) if sample_size > dataset.x.nrows() => {
                return Err("The set sample size is greater than the dataset size.".into())
            }
            None => self.set_sample_size(Some(dataset.x.nrows() / self.num_trees()))?,
            _ => {}
        }
        let trees: Result<Vec<_>, String> = seeds
            .into_par_iter()
            .map(|tree_seed| {
                let subset = dataset.samples(self.sample_size().unwrap(), Some(tree_seed));
                let mut tree = DecisionTreeRegressor::with_params(
                    Some(self.min_samples_split()),
                    self.max_depth(),
                )
                .map_err(|error| error.to_string())?;
                tree.fit(&subset).map_err(|error| error.to_string())?;
                Ok(tree)
            })
            .collect();
        self.set_trees(trees?);
        Ok("Finished building the trees.".into())
    }

    pub fn predict(&self, features: &DMatrix<T>) -> Result<DVector<T>, Box<dyn Error>> {
        let mut predictions = DVector::from_element(features.nrows(), T::from_f64(0.0).unwrap());

        for i in 0..features.nrows() {
            let mut total_prediction = T::from_f64(0.0).unwrap();
            for tree in self.trees() {
                let prediction = tree.predict(&DMatrix::from_row_slice(
                    1,
                    features.ncols(),
                    features.row(i).transpose().as_slice(),
                ))?;
                total_prediction += prediction[0];
            }

            predictions[i] = total_prediction / T::from_usize(self.trees().len()).unwrap();
        }
        Ok(predictions)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use nalgebra::{DMatrix, DVector};

    // Helper function to create a small mock dataset
    fn create_mock_dataset() -> Dataset<f64, f64> {
        let x = DMatrix::from_row_slice(
            6,
            2,
            &[1.0, 2.0, 1.1, 2.1, 1.2, 2.2, 3.0, 4.0, 3.1, 4.1, 3.2, 4.2],
        );
        let y = DVector::from_vec(vec![0.5, 0.5, 0.5, 1.5, 1.5, 1.5]);
        Dataset::new(x, y)
    }

    #[test]
    fn test_default() {
        let forest = RandomForestRegressor::<f64>::default();
        assert_eq!(forest.num_trees(), 3); // Default number of trees
        assert_eq!(forest.min_samples_split(), 2); // Default min_samples_split
    }

    #[test]
    fn test_with_params() {
        let forest = RandomForestRegressor::<f64>::with_params(
            Some(10),  // num_trees
            Some(4),   // min_samples_split
            Some(5),   // max_depth
            Some(100), // sample_size
        )
        .unwrap();
        assert_eq!(forest.num_trees(), 10);
        assert_eq!(forest.min_samples_split(), 4);
        assert_eq!(forest.max_depth(), Some(5));
        assert_eq!(forest.sample_size(), Some(100));
    }

    #[test]
    fn test_fit() {
        let mut forest = RandomForestRegressor::<f64>::new();
        let dataset = create_mock_dataset();
        let fit_result = forest.fit(&dataset, Some(42)); // Using a fixed seed for reproducibility
        assert!(fit_result.is_ok());
        assert_eq!(forest.trees().len(), 3); // Should have 3 trees after fitting
    }

    // #[test]
    // fn test_predict() {
    //     let mut forest = RandomForestRegressor::<f64>::new();
    //     let dataset = create_mock_dataset();
    //     forest.fit(&dataset, Some(42)).unwrap();

    //     let features = DMatrix::from_row_slice(
    //         2,
    //         2,
    //         &[
    //             1.0, 2.0, // Should be close to class 0.5
    //             3.0, 4.0, // Should be close to class 1.5
    //         ],
    //     );
    //     let predictions = forest.predict(&features).unwrap();
    //     assert!((predictions[0] - 0.5).abs() < 0.1);
    //     assert!((predictions[1] - 1.5).abs() < 0.1);
    // }
}