1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
use std::cmp::{Eq, Ordering};
use std::convert::Infallible;
use std::hash::Hash;
use hashbrown::{HashMap, HashSet};
use rayon::prelude::*;
use petgraph::stable_graph::{EdgeIndex, NodeIndex, StableGraph};
use petgraph::unionfind::UnionFind;
use petgraph::visit::{
EdgeCount, EdgeIndexable, EdgeRef, GraphProp, IntoEdgeReferences, IntoEdges,
IntoNodeIdentifiers, IntoNodeReferences, NodeCount, NodeIndexable, NodeRef, Visitable,
};
use petgraph::Undirected;
use crate::dictmap::*;
use crate::shortest_path::dijkstra;
use crate::utils::pairwise;
type AllPairsDijkstraReturn = HashMap<usize, (DictMap<usize, Vec<usize>>, DictMap<usize, f64>)>;
fn all_pairs_dijkstra_shortest_paths<G, F, E>(
graph: G,
mut weight_fn: F,
) -> Result<AllPairsDijkstraReturn, E>
where
G: NodeIndexable
+ IntoNodeIdentifiers
+ EdgeCount
+ NodeCount
+ EdgeIndexable
+ Visitable
+ Sync
+ IntoEdges,
G::NodeId: Eq + Hash + Send,
G::EdgeId: Eq + Hash + Send,
F: FnMut(G::EdgeRef) -> Result<f64, E>,
{
if graph.node_count() == 0 {
return Ok(HashMap::new());
} else if graph.edge_count() == 0 {
return Ok(graph
.node_identifiers()
.map(|x| {
(
NodeIndexable::to_index(&graph, x),
(DictMap::new(), DictMap::new()),
)
})
.collect());
}
let mut edge_weights: Vec<Option<f64>> = vec![None; graph.edge_bound()];
for edge in graph.edge_references() {
let index = EdgeIndexable::to_index(&graph, edge.id());
edge_weights[index] = Some(weight_fn(edge)?);
}
let edge_cost = |e: G::EdgeRef| -> Result<f64, Infallible> {
Ok(edge_weights[EdgeIndexable::to_index(&graph, e.id())].unwrap())
};
let node_indices: Vec<usize> = graph
.node_identifiers()
.map(|n| NodeIndexable::to_index(&graph, n))
.collect();
Ok(node_indices
.into_par_iter()
.map(|x| {
let mut paths: DictMap<G::NodeId, Vec<G::NodeId>> =
DictMap::with_capacity(graph.node_count());
let distances: DictMap<G::NodeId, f64> = dijkstra(
graph,
NodeIndexable::from_index(&graph, x),
None,
edge_cost,
Some(&mut paths),
)
.unwrap();
(
x,
(
paths
.into_iter()
.map(|(k, v)| {
(
NodeIndexable::to_index(&graph, k),
v.into_iter()
.map(|n| NodeIndexable::to_index(&graph, n))
.collect(),
)
})
.collect(),
distances
.into_iter()
.map(|(k, v)| (NodeIndexable::to_index(&graph, k), v))
.collect(),
),
)
})
.collect())
}
struct MetricClosureEdge {
source: usize,
target: usize,
distance: f64,
path: Vec<usize>,
}
/// Return the metric closure of a graph
///
/// The metric closure of a graph is the complete graph in which each edge is
/// weighted by the shortest path distance between the nodes in the graph.
///
/// Arguments:
/// `graph`: The input graph to compute the metric closure for
/// `weight_fn`: A callable weight function that will be passed an edge reference
/// for each edge in the graph and it is expected to return a `Result<f64>`
/// which if it doesn't error represents the weight of that edge.
/// `default_weight`: A blind callable that returns a default weight to use for
/// edges added to the output
///
/// Returns a `StableGraph` with the input graph node ids for node weights and edge weights with a
/// tuple of the numeric weight (found via `weight_fn`) and the path. The output will be `None`
/// if `graph` is disconnected.
///
/// # Example
/// ```rust
/// use std::convert::Infallible;
///
/// use rustworkx_core::petgraph::Graph;
/// use rustworkx_core::petgraph::Undirected;
/// use rustworkx_core::petgraph::graph::EdgeReference;
/// use rustworkx_core::petgraph::visit::{IntoEdgeReferences, EdgeRef};
///
/// use rustworkx_core::steiner_tree::metric_closure;
///
/// let input_graph = Graph::<(), u8, Undirected>::from_edges(&[
/// (0, 1, 10),
/// (1, 2, 10),
/// (2, 3, 10),
/// (3, 4, 10),
/// (4, 5, 10),
/// (1, 6, 1),
/// (6, 4, 1),
/// ]);
///
/// let weight_fn = |e: EdgeReference<u8>| -> Result<f64, Infallible> {
/// Ok(*e.weight() as f64)
/// };
///
/// let closure = metric_closure(&input_graph, weight_fn).unwrap().unwrap();
/// let mut output_edge_list: Vec<(usize, usize, (f64, Vec<usize>))> = closure.edge_references().map(|edge| (edge.source().index(), edge.target().index(), edge.weight().clone())).collect();
/// let mut expected_edges: Vec<(usize, usize, (f64, Vec<usize>))> = vec![
/// (0, 1, (10.0, vec![0, 1])),
/// (0, 2, (20.0, vec![0, 1, 2])),
/// (0, 3, (22.0, vec![0, 1, 6, 4, 3])),
/// (0, 4, (12.0, vec![0, 1, 6, 4])),
/// (0, 5, (22.0, vec![0, 1, 6, 4, 5])),
/// (0, 6, (11.0, vec![0, 1, 6])),
/// (1, 2, (10.0, vec![1, 2])),
/// (1, 3, (12.0, vec![1, 6, 4, 3])),
/// (1, 4, (2.0, vec![1, 6, 4])),
/// (1, 5, (12.0, vec![1, 6, 4, 5])),
/// (1, 6, (1.0, vec![1, 6])),
/// (2, 3, (10.0, vec![2, 3])),
/// (2, 4, (12.0, vec![2, 1, 6, 4])),
/// (2, 5, (22.0, vec![2, 1, 6, 4, 5])),
/// (2, 6, (11.0, vec![2, 1, 6])),
/// (3, 4, (10.0, vec![3, 4])),
/// (3, 5, (20.0, vec![3, 4, 5])),
/// (3, 6, (11.0, vec![3, 4, 6])),
/// (4, 5, (10.0, vec![4, 5])),
/// (4, 6, (1.0, vec![4, 6])),
/// (5, 6, (11.0, vec![5, 4, 6])),
/// ];
/// output_edge_list.sort_by_key(|x| [x.0, x.1]);
/// expected_edges.sort_by_key(|x| [x.0, x.1]);
/// assert_eq!(output_edge_list, expected_edges);
///
/// ```
#[allow(clippy::type_complexity)]
pub fn metric_closure<G, F, E>(
graph: G,
weight_fn: F,
) -> Result<Option<StableGraph<G::NodeId, (f64, Vec<usize>), Undirected>>, E>
where
G: NodeIndexable
+ EdgeIndexable
+ Sync
+ EdgeCount
+ NodeCount
+ Visitable
+ IntoNodeReferences
+ IntoEdges
+ Visitable
+ GraphProp<EdgeType = Undirected>,
G::NodeId: Eq + Hash + NodeRef + Send,
G::EdgeId: Eq + Hash + Send,
G::NodeWeight: Clone,
F: FnMut(G::EdgeRef) -> Result<f64, E>,
{
let mut out_graph: StableGraph<G::NodeId, (f64, Vec<usize>), Undirected> =
StableGraph::with_capacity(graph.node_count(), graph.edge_count());
let node_map: HashMap<usize, NodeIndex> = graph
.node_references()
.map(|node| {
(
NodeIndexable::to_index(&graph, node.id()),
out_graph.add_node(node.id()),
)
})
.collect();
let edges = metric_closure_edges(graph, weight_fn)?;
if edges.is_none() {
return Ok(None);
}
for edge in edges.unwrap() {
out_graph.add_edge(
node_map[&edge.source],
node_map[&edge.target],
(edge.distance, edge.path),
);
}
Ok(Some(out_graph))
}
fn metric_closure_edges<G, F, E>(
graph: G,
weight_fn: F,
) -> Result<Option<Vec<MetricClosureEdge>>, E>
where
G: NodeIndexable
+ Sync
+ Visitable
+ IntoNodeReferences
+ IntoEdges
+ Visitable
+ NodeIndexable
+ NodeCount
+ EdgeCount
+ EdgeIndexable,
G::NodeId: Eq + Hash + Send,
G::EdgeId: Eq + Hash + Send,
F: FnMut(G::EdgeRef) -> Result<f64, E>,
{
let node_count = graph.node_count();
if node_count == 0 {
return Ok(Some(Vec::new()));
}
let mut out_vec = Vec::with_capacity(node_count * (node_count - 1) / 2);
let paths = all_pairs_dijkstra_shortest_paths(graph, weight_fn)?;
let mut nodes: HashSet<usize> = graph
.node_identifiers()
.map(|x| NodeIndexable::to_index(&graph, x))
.collect();
let first_node = graph
.node_identifiers()
.map(|x| NodeIndexable::to_index(&graph, x))
.next()
.unwrap();
let path_keys: HashSet<usize> = paths[&first_node].0.keys().copied().collect();
// first_node will always be missing from path_keys so if the difference
// is > 1 with nodes that means there is another node in the graph that
// first_node doesn't have a path to.
if nodes.difference(&path_keys).count() > 1 {
return Ok(None);
}
// Iterate over node indices for a deterministic order
for node in graph
.node_identifiers()
.map(|x| NodeIndexable::to_index(&graph, x))
{
let path_map = &paths[&node].0;
nodes.remove(&node);
let distance = &paths[&node].1;
for v in &nodes {
out_vec.push(MetricClosureEdge {
source: node,
target: *v,
distance: distance[v],
path: path_map[v].clone(),
});
}
}
Ok(Some(out_vec))
}
/// Computes the shortest path between all pairs `(s, t)` of the given `terminal_nodes`
/// *provided* that:
/// - there is an edge `(u, v)` in the graph and path pass through this edge.
/// - node `s` is the closest node to `u` among all `terminal_nodes`
/// - node `t` is the closest node to `v` among all `terminal_nodes`
/// and wraps the result inside a `MetricClosureEdge`
///
/// For example, if all vertices are terminals, it returns the original edges of the graph.
fn fast_metric_edges<G, F, E>(
in_graph: G,
terminal_nodes: &[G::NodeId],
mut weight_fn: F,
) -> Result<Vec<MetricClosureEdge>, E>
where
G: IntoEdges
+ NodeIndexable
+ EdgeIndexable
+ Sync
+ EdgeCount
+ Visitable
+ IntoNodeReferences
+ NodeCount,
G::NodeId: Eq + Hash + Send,
G::EdgeId: Eq + Hash + Send,
F: FnMut(G::EdgeRef) -> Result<f64, E>,
{
let mut graph: StableGraph<(), (), Undirected> = StableGraph::with_capacity(
in_graph.node_count() + 1,
in_graph.edge_count() + terminal_nodes.len(),
);
let node_map: HashMap<G::NodeId, NodeIndex> = in_graph
.node_references()
.map(|n| (n.id(), graph.add_node(())))
.collect();
let reverse_node_map: HashMap<NodeIndex, G::NodeId> =
node_map.iter().map(|(k, v)| (*v, *k)).collect();
let edge_map: HashMap<EdgeIndex, G::EdgeRef> = in_graph
.edge_references()
.map(|e| {
(
graph.add_edge(node_map[&e.source()], node_map[&e.target()], ()),
e,
)
})
.collect();
// temporarily add a ``dummy`` node, connect it with
// all the terminal nodes and find all the shortest paths
// starting from ``dummy`` node.
let dummy = graph.add_node(());
for node in terminal_nodes {
graph.add_edge(dummy, node_map[node], ());
}
let mut paths = DictMap::with_capacity(graph.node_count());
let mut wrapped_weight_fn =
|e: <&StableGraph<(), ()> as IntoEdgeReferences>::EdgeRef| -> Result<f64, E> {
if let Some(edge_ref) = edge_map.get(&e.id()) {
weight_fn(*edge_ref)
} else {
Ok(0.0)
}
};
let mut distance: DictMap<NodeIndex, f64> = dijkstra(
&graph,
dummy,
None,
&mut wrapped_weight_fn,
Some(&mut paths),
)?;
paths.swap_remove(&dummy);
distance.swap_remove(&dummy);
// ``partition[u]`` holds the terminal node closest to node ``u``.
let mut partition: Vec<usize> = vec![usize::MAX; graph.node_bound()];
for (u, path) in paths.iter() {
let u = NodeIndexable::to_index(&in_graph, reverse_node_map[u]);
partition[u] = NodeIndexable::to_index(&in_graph, reverse_node_map[&path[1]]);
}
let mut out_edges: Vec<MetricClosureEdge> = Vec::with_capacity(graph.edge_count());
for edge in graph.edge_references() {
let source = edge.source();
let target = edge.target();
// assert that ``source`` is reachable from a terminal node.
if distance.contains_key(&source) {
let weight = distance[&source] + wrapped_weight_fn(edge)? + distance[&target];
let mut path: Vec<usize> = paths[&source]
.iter()
.skip(1)
.map(|x| NodeIndexable::to_index(&in_graph, reverse_node_map[x]))
.collect();
path.append(
&mut paths[&target]
.iter()
.skip(1)
.rev()
.map(|x| NodeIndexable::to_index(&in_graph, reverse_node_map[x]))
.collect(),
);
let source = NodeIndexable::to_index(&in_graph, reverse_node_map[&source]);
let target = NodeIndexable::to_index(&in_graph, reverse_node_map[&target]);
let mut source = partition[source];
let mut target = partition[target];
match source.cmp(&target) {
Ordering::Equal => continue,
Ordering::Greater => std::mem::swap(&mut source, &mut target),
_ => {}
}
out_edges.push(MetricClosureEdge {
source,
target,
distance: weight,
path,
});
}
}
// if parallel edges, keep the edge with minimum distance.
out_edges.par_sort_unstable_by(|a, b| {
let weight_a = (a.source, a.target, a.distance);
let weight_b = (b.source, b.target, b.distance);
weight_a.partial_cmp(&weight_b).unwrap_or(Ordering::Less)
});
out_edges.dedup_by(|edge_a, edge_b| {
edge_a.source == edge_b.source && edge_a.target == edge_b.target
});
Ok(out_edges)
}
pub struct SteinerTreeResult {
pub used_node_indices: HashSet<usize>,
pub used_edge_endpoints: HashSet<(usize, usize)>,
}
/// Return an approximation to the minimum Steiner tree of a graph.
///
/// The minimum tree of ``graph`` with regard to a set of ``terminal_nodes``
/// is a tree within ``graph`` that spans those nodes and has a minimum size
/// (measured as the sum of edge weights) amoung all such trees.
///
/// The minimum steiner tree can be approximated by computing the minimum
/// spanning tree of the subgraph of the metric closure of ``graph`` induced
/// by the terminal nodes, where the metric closure of ``graph`` is the
/// complete graph in which each edge is weighted by the shortest path distance
/// between nodes in ``graph``.
///
/// This algorithm [1]_ produces a tree whose weight is within a
/// :math:`(2 - (2 / t))` factor of the weight of the optimal Steiner tree
/// where :math:`t` is the number of terminal nodes. The algorithm implemented
/// here is due to [2]_ . It avoids computing all pairs shortest paths but rather
/// reduces the problem to a single source shortest path and a minimum spanning tree
/// problem.
///
/// Arguments:
/// `graph`: The input graph to compute the steiner tree of
/// `terminal_nodes`: The terminal nodes of the steiner tree
/// `weight_fn`: A callable weight function that will be passed an edge reference
/// for each edge in the graph and it is expected to return a `Result<f64>`
/// which if it doesn't error represents the weight of that edge.
///
/// Returns a custom struct that contains a set of nodes and edges and `None`
/// if the graph is disconnected relative to the terminal nodes.
///
/// # Example
///
/// ```rust
/// use std::convert::Infallible;
///
/// use rustworkx_core::petgraph::Graph;
/// use rustworkx_core::petgraph::graph::NodeIndex;
/// use rustworkx_core::petgraph::Undirected;
/// use rustworkx_core::petgraph::graph::EdgeReference;
/// use rustworkx_core::petgraph::visit::{IntoEdgeReferences, EdgeRef};
///
/// use rustworkx_core::steiner_tree::steiner_tree;
///
/// let input_graph = Graph::<(), u8, Undirected>::from_edges(&[
/// (0, 1, 10),
/// (1, 2, 10),
/// (2, 3, 10),
/// (3, 4, 10),
/// (4, 5, 10),
/// (1, 6, 1),
/// (6, 4, 1),
/// ]);
///
/// let weight_fn = |e: EdgeReference<u8>| -> Result<f64, Infallible> {
/// Ok(*e.weight() as f64)
/// };
/// let terminal_nodes = vec![
/// NodeIndex::new(0),
/// NodeIndex::new(1),
/// NodeIndex::new(2),
/// NodeIndex::new(3),
/// NodeIndex::new(4),
/// NodeIndex::new(5),
/// ];
///
/// let tree = steiner_tree(&input_graph, &terminal_nodes, weight_fn).unwrap().unwrap();
/// ```
///
/// .. [1] Kou, Markowsky & Berman,
/// "A fast algorithm for Steiner trees"
/// Acta Informatica 15, 141–145 (1981).
/// https://link.springer.com/article/10.1007/BF00288961
/// .. [2] Kurt Mehlhorn,
/// "A faster approximation algorithm for the Steiner problem in graphs"
/// https://doi.org/10.1016/0020-0190(88)90066-X
pub fn steiner_tree<G, F, E>(
graph: G,
terminal_nodes: &[G::NodeId],
weight_fn: F,
) -> Result<Option<SteinerTreeResult>, E>
where
G: IntoEdges
+ NodeIndexable
+ Sync
+ EdgeCount
+ IntoNodeReferences
+ EdgeIndexable
+ Visitable
+ NodeCount,
G::NodeId: Eq + Hash + Send,
G::EdgeId: Eq + Hash + Send,
F: FnMut(G::EdgeRef) -> Result<f64, E>,
{
let node_bound = graph.node_bound();
let mut edge_list = fast_metric_edges(graph, terminal_nodes, weight_fn)?;
let mut subgraphs = UnionFind::<usize>::new(node_bound);
edge_list.par_sort_unstable_by(|a, b| {
let weight_a = (a.distance, a.source, a.target);
let weight_b = (b.distance, b.source, b.target);
weight_a.partial_cmp(&weight_b).unwrap_or(Ordering::Less)
});
let mut mst_edges: Vec<MetricClosureEdge> = Vec::new();
for float_edge_pair in edge_list {
let u = float_edge_pair.source;
let v = float_edge_pair.target;
if subgraphs.union(u, v) {
mst_edges.push(float_edge_pair);
}
}
// assert that the terminal nodes are connected.
if !terminal_nodes.is_empty() && mst_edges.len() != terminal_nodes.len() - 1 {
return Ok(None);
}
// Generate the output graph from the MST
let out_edge_list: Vec<[usize; 2]> = mst_edges
.into_iter()
.flat_map(|edge| pairwise(edge.path))
.filter_map(|x| x.0.map(|a| [a, x.1]))
.collect();
let out_edges: HashSet<(usize, usize)> = out_edge_list.iter().map(|x| (x[0], x[1])).collect();
let out_nodes: HashSet<usize> = out_edge_list
.iter()
.flat_map(|x| x.iter())
.copied()
.collect();
Ok(Some(SteinerTreeResult {
used_node_indices: out_nodes,
used_edge_endpoints: out_edges,
}))
}