1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
use hashbrown::{HashMap, HashSet};
use petgraph::visit::{IntoNeighbors, IntoNodeIdentifiers, NodeCount};
use std::hash::Hash;
/// Return a list of cycles which form a basis for cycles of a given graph.
///
/// A basis for cycles of a graph is a minimal collection of
/// cycles such that any cycle in the graph can be written
/// as a sum of cycles in the basis. Here summation of cycles
/// is defined as the exclusive-or of the edges.
///
/// This is adapted from
/// Paton, K. An algorithm for finding a fundamental set of
/// cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518.
///
/// The function implicitly assumes that there are no parallel edges.
/// It may produce incorrect/unexpected results if the input graph has
/// parallel edges.
///
///
/// Arguments:
///
/// * `graph` - The graph in which to find the basis.
/// * `root` - Optional node index for starting the basis search. If not
/// specified, an arbitrary node is chosen.
///
/// # Example
/// ```rust
/// use petgraph::prelude::*;
/// use rustworkx_core::connectivity::cycle_basis;
///
/// let edge_list = [(0, 1), (0, 3), (0, 5), (1, 2), (2, 3), (3, 4), (4, 5)];
/// let graph = UnGraph::<i32, i32>::from_edges(&edge_list);
/// let mut res: Vec<Vec<NodeIndex>> = cycle_basis(&graph, Some(NodeIndex::new(0)));
/// ```
pub fn cycle_basis<G>(graph: G, root: Option<G::NodeId>) -> Vec<Vec<G::NodeId>>
where
G: NodeCount,
G: IntoNeighbors,
G: IntoNodeIdentifiers,
G::NodeId: Eq + Hash,
{
let mut root_node = root;
let mut graph_nodes: HashSet<G::NodeId> = graph.node_identifiers().collect();
let mut cycles: Vec<Vec<G::NodeId>> = Vec::new();
while !graph_nodes.is_empty() {
let temp_value: G::NodeId;
// If root_node is not set get an arbitrary node from the set of graph
// nodes we've not "examined"
let root_index = match root_node {
Some(root_node) => root_node,
None => {
temp_value = *graph_nodes.iter().next().unwrap();
graph_nodes.remove(&temp_value);
temp_value
}
};
// Stack (ie "pushdown list") of vertices already in the spanning tree
let mut stack: Vec<G::NodeId> = vec![root_index];
// Map of node index to predecessor node index
let mut pred: HashMap<G::NodeId, G::NodeId> = HashMap::new();
pred.insert(root_index, root_index);
// Set of examined nodes during this iteration
let mut used: HashMap<G::NodeId, HashSet<G::NodeId>> = HashMap::new();
used.insert(root_index, HashSet::new());
// Walk the spanning tree
// Use the last element added so that cycles are easier to find
while let Some(z) = stack.pop() {
for neighbor in graph.neighbors(z) {
// A new node was encountered:
if !used.contains_key(&neighbor) {
pred.insert(neighbor, z);
stack.push(neighbor);
let mut temp_set: HashSet<G::NodeId> = HashSet::new();
temp_set.insert(z);
used.insert(neighbor, temp_set);
// A self loop:
} else if z == neighbor {
let cycle: Vec<G::NodeId> = vec![z];
cycles.push(cycle);
// A cycle was found:
} else if !used.get(&z).unwrap().contains(&neighbor) {
let pn = used.get(&neighbor).unwrap();
let mut cycle: Vec<G::NodeId> = vec![neighbor, z];
let mut p = pred.get(&z).unwrap();
while !pn.contains(p) {
cycle.push(*p);
p = pred.get(p).unwrap();
}
cycle.push(*p);
cycles.push(cycle);
let neighbor_set = used.get_mut(&neighbor).unwrap();
neighbor_set.insert(z);
}
}
}
let mut temp_hashset: HashSet<G::NodeId> = HashSet::new();
for key in pred.keys() {
temp_hashset.insert(*key);
}
graph_nodes = graph_nodes.difference(&temp_hashset).copied().collect();
root_node = None;
}
cycles
}
#[cfg(test)]
mod tests {
use crate::connectivity::cycle_basis;
use petgraph::prelude::*;
fn sorted_cycle(cycles: Vec<Vec<NodeIndex>>) -> Vec<Vec<usize>> {
let mut sorted_cycles: Vec<Vec<usize>> = vec![];
for cycle in cycles {
let mut cycle: Vec<usize> = cycle.iter().map(|x| x.index()).collect();
cycle.sort();
sorted_cycles.push(cycle);
}
sorted_cycles.sort();
sorted_cycles
}
#[test]
fn test_cycle_basis_source() {
let edge_list = vec![
(0, 1),
(0, 3),
(0, 5),
(0, 8),
(1, 2),
(1, 6),
(2, 3),
(3, 4),
(4, 5),
(6, 7),
(7, 8),
(8, 9),
];
let graph = UnGraph::<i32, i32>::from_edges(edge_list);
let expected = vec![vec![0, 1, 2, 3], vec![0, 1, 6, 7, 8], vec![0, 3, 4, 5]];
let res_0 = cycle_basis(&graph, Some(NodeIndex::new(0)));
assert_eq!(sorted_cycle(res_0), expected);
let res_1 = cycle_basis(&graph, Some(NodeIndex::new(1)));
assert_eq!(sorted_cycle(res_1), expected);
let res_9 = cycle_basis(&graph, Some(NodeIndex::new(9)));
assert_eq!(sorted_cycle(res_9), expected);
}
#[test]
fn test_self_loop() {
let edge_list = vec![
(0, 1),
(0, 3),
(0, 5),
(0, 8),
(1, 2),
(1, 6),
(2, 3),
(3, 4),
(4, 5),
(6, 7),
(7, 8),
(8, 9),
];
let mut graph = UnGraph::<i32, i32>::from_edges(edge_list);
graph.add_edge(NodeIndex::new(1), NodeIndex::new(1), 0);
let res_0 = cycle_basis(&graph, Some(NodeIndex::new(0)));
assert_eq!(
sorted_cycle(res_0),
vec![
vec![0, 1, 2, 3],
vec![0, 1, 6, 7, 8],
vec![0, 3, 4, 5],
vec![1]
]
);
}
}