1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.

// This module was originally copied and forked from the upstream petgraph
// repository, specifically:
// https://github.com/petgraph/petgraph/blob/0.5.1/src/dijkstra.rs
// this was necessary to modify the error handling to allow python callables
// to be use for the input functions for edge_cost and return any exceptions
// raised in Python instead of panicking

use std::collections::BinaryHeap;
use std::hash::Hash;

use hashbrown::hash_map::Entry::{Occupied, Vacant};
use hashbrown::HashMap;

use petgraph::algo::Measure;
use petgraph::visit::{ControlFlow, EdgeRef, IntoEdges, VisitMap, Visitable};

use crate::min_scored::MinScored;

use super::try_control;

macro_rules! try_control_with_result {
    ($e:expr, $p:stmt) => {
        try_control_with_result!($e, $p, ());
    };
    ($e:expr, $p:stmt, $q:stmt) => {
        match $e {
            x => {
                if x.should_break() {
                    return Ok(x);
                } else if x.should_prune() {
                    $p
                } else {
                    $q
                }
            }
        }
    };
}

/// A dijkstra search visitor event.
#[derive(Copy, Clone, Debug)]
pub enum DijkstraEvent<N, E, K> {
    /// This is invoked when a vertex is encountered for the first time and
    /// it's popped from the queue. Together with the node, we report the optimal
    /// distance of the node.
    Discover(N, K),
    /// This is invoked on every out-edge of each vertex after it is discovered.
    ExamineEdge(N, N, E),
    /// Upon examination, if the distance of the target of the edge is reduced, this event is emitted.
    EdgeRelaxed(N, N, E),
    /// Upon examination, if the edge is not relaxed, this event is emitted.
    EdgeNotRelaxed(N, N, E),
    /// All edges from a node have been reported.
    Finish(N),
}

/// Dijkstra traversal of a graph.
///
/// Starting points are the nodes in the iterator `starts` (specify just one
/// start vertex *x* by using `Some(x)`).
///
/// The traversal emits discovery and finish events for each reachable vertex,
/// and edge classification of each reachable edge. `visitor` is called for each
/// event, see [`DijkstraEvent`] for possible values.
///
/// The return value should implement the trait [`ControlFlow`], and can be used to change
/// the control flow of the search.
///
/// [`Control`](petgraph::visit::Control) Implements [`ControlFlow`] such that `Control::Continue` resumes the search.
/// `Control::Break` will stop the visit early, returning the contained value.
/// `Control::Prune` will stop traversing any additional edges from the current
/// node and proceed immediately to the `Finish` event.
///
/// There are implementations of [`ControlFlow`] for `()`, and [`Result<C, E>`] where
/// `C: ControlFlow`. The implementation for `()` will continue until finished.
/// For [`Result`], upon encountering an `E` it will break, otherwise acting the same as `C`.
///
/// ***Panics** if you attempt to prune a node from its `Finish` event.
///
/// The pseudo-code for the Dijkstra algorithm is listed below, with the annotated
/// event points, for which the given visitor object will be called with the
/// appropriate method.
///
/// ```norust
/// DIJKSTRA(G, source, weight)
///   for each vertex u in V
///       d[u] := infinity
///       p[u] := u
///   end for
///   d[source] := 0
///   INSERT(Q, source)
///   while (Q != Ø)
///       u := EXTRACT-MIN(Q)                         discover vertex u
///       for each vertex v in Adj[u]                 examine edge (u,v)
///           if (weight[(u,v)] + d[u] < d[v])        edge (u,v) relaxed
///               d[v] := weight[(u,v)] + d[u]
///               p[v] := u
///               DECREASE-KEY(Q, v)
///           else                                    edge (u,v) not relaxed
///               ...
///           if (d[v] was originally infinity)
///               INSERT(Q, v)
///       end for                                     finish vertex u
///   end while
/// ```
///
/// # Example returning [`Control`](petgraph::visit::Control).
///
/// Find the shortest path from vertex 0 to 5, and exit the visit as soon as
/// we reach the goal vertex.
///
/// ```
/// use rustworkx_core::petgraph::prelude::*;
/// use rustworkx_core::petgraph::graph::node_index as n;
/// use rustworkx_core::petgraph::visit::Control;
///
/// use rustworkx_core::traversal::{DijkstraEvent, dijkstra_search};
///
/// let gr: Graph<(), ()> = Graph::from_edges(&[
///     (0, 1), (0, 2), (0, 3), (0, 4),
///     (1, 3),
///     (2, 3), (2, 4),
///     (4, 5),
/// ]);
///
/// // record each predecessor, mapping node → node
/// let mut predecessor = vec![NodeIndex::end(); gr.node_count()];
/// let start = n(0);
/// let goal = n(5);
/// dijkstra_search(
///     &gr,
///     Some(start),
///     |edge| -> Result<usize, ()> {
///         Ok(1)
///     },
///     |event| {
///         match event {
///             DijkstraEvent::Discover(v, _) => {
///                 if v == goal {
///                     return Control::Break(v);
///                 }   
///             },
///             DijkstraEvent::EdgeRelaxed(u, v, _) => {
///                 predecessor[v.index()] = u;
///             },
///             _ => {}
///         };
///
///         Control::Continue
///     },
/// ).unwrap();
///
/// let mut next = goal;
/// let mut path = vec![next];
/// while next != start {
///     let pred = predecessor[next.index()];
///     path.push(pred);
///     next = pred;
/// }
/// path.reverse();
/// assert_eq!(&path, &[n(0), n(4), n(5)]);
/// ```
pub fn dijkstra_search<G, I, F, K, E, H, C>(
    graph: G,
    starts: I,
    mut edge_cost: F,
    mut visitor: H,
) -> Result<C, E>
where
    G: IntoEdges + Visitable,
    G::NodeId: Eq + Hash,
    I: IntoIterator<Item = G::NodeId>,
    F: FnMut(G::EdgeRef) -> Result<K, E>,
    K: Measure + Copy,
    H: FnMut(DijkstraEvent<G::NodeId, &G::EdgeWeight, K>) -> C,
    C: ControlFlow,
{
    let visited = &mut graph.visit_map();

    for start in starts {
        // `dijkstra_visitor` returns a "signal" to either continue or exit early
        // but it never "prunes", so we use `unreachable`.
        try_control!(
            dijkstra_visitor(graph, start, &mut edge_cost, &mut visitor, visited),
            unreachable!()
        );
    }

    Ok(C::continuing())
}

pub fn dijkstra_visitor<G, F, K, E, V, C>(
    graph: G,
    start: G::NodeId,
    mut edge_cost: F,
    mut visitor: V,
    visited: &mut G::Map,
) -> Result<C, E>
where
    G: IntoEdges + Visitable,
    G::NodeId: Eq + Hash,
    F: FnMut(G::EdgeRef) -> Result<K, E>,
    K: Measure + Copy,
    V: FnMut(DijkstraEvent<G::NodeId, &G::EdgeWeight, K>) -> C,
    C: ControlFlow,
{
    if visited.is_visited(&start) {
        return Ok(C::continuing());
    }

    let mut scores = HashMap::new();
    let mut visit_next = BinaryHeap::new();
    let zero_score = K::default();
    scores.insert(start, zero_score);
    visit_next.push(MinScored(zero_score, start));

    while let Some(MinScored(node_score, node)) = visit_next.pop() {
        if !visited.visit(node) {
            continue;
        }

        try_control_with_result!(visitor(DijkstraEvent::Discover(node, node_score)), continue);

        for edge in graph.edges(node) {
            let next = edge.target();
            try_control_with_result!(
                visitor(DijkstraEvent::ExamineEdge(node, next, edge.weight())),
                continue
            );

            if visited.is_visited(&next) {
                continue;
            }

            let cost = edge_cost(edge)?;
            let next_score = node_score + cost;
            match scores.entry(next) {
                Occupied(ent) => {
                    if next_score < *ent.get() {
                        try_control_with_result!(
                            visitor(DijkstraEvent::EdgeRelaxed(node, next, edge.weight())),
                            continue
                        );
                        *ent.into_mut() = next_score;
                        visit_next.push(MinScored(next_score, next));
                    } else {
                        try_control_with_result!(
                            visitor(DijkstraEvent::EdgeNotRelaxed(node, next, edge.weight())),
                            continue
                        );
                    }
                }
                Vacant(ent) => {
                    try_control_with_result!(
                        visitor(DijkstraEvent::EdgeRelaxed(node, next, edge.weight())),
                        continue
                    );
                    ent.insert(next_score);
                    visit_next.push(MinScored(next_score, next));
                }
            }
        }

        try_control_with_result!(
            visitor(DijkstraEvent::Finish(node)),
            panic!("Pruning on the `DijkstraEvent::Finish` is not supported!")
        );
    }

    Ok(C::continuing())
}