1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// This module was originally copied and forked from the upstream petgraph
// repository, specifically:
// https://github.com/petgraph/petgraph/blob/0.5.1/src/dijkstra.rs
// this was necessary to modify the error handling to allow python callables
// to be use for the input functions for edge_cost and return any exceptions
// raised in Python instead of panicking
use std::collections::BinaryHeap;
use std::hash::Hash;
use hashbrown::hash_map::Entry::{Occupied, Vacant};
use hashbrown::HashMap;
use petgraph::algo::Measure;
use petgraph::visit::{ControlFlow, EdgeRef, IntoEdges, VisitMap, Visitable};
use crate::min_scored::MinScored;
use super::try_control;
macro_rules! try_control_with_result {
($e:expr, $p:stmt) => {
try_control_with_result!($e, $p, ());
};
($e:expr, $p:stmt, $q:stmt) => {
match $e {
x => {
if x.should_break() {
return Ok(x);
} else if x.should_prune() {
$p
} else {
$q
}
}
}
};
}
/// A dijkstra search visitor event.
#[derive(Copy, Clone, Debug)]
pub enum DijkstraEvent<N, E, K> {
/// This is invoked when a vertex is encountered for the first time and
/// it's popped from the queue. Together with the node, we report the optimal
/// distance of the node.
Discover(N, K),
/// This is invoked on every out-edge of each vertex after it is discovered.
ExamineEdge(N, N, E),
/// Upon examination, if the distance of the target of the edge is reduced, this event is emitted.
EdgeRelaxed(N, N, E),
/// Upon examination, if the edge is not relaxed, this event is emitted.
EdgeNotRelaxed(N, N, E),
/// All edges from a node have been reported.
Finish(N),
}
/// Dijkstra traversal of a graph.
///
/// Starting points are the nodes in the iterator `starts` (specify just one
/// start vertex *x* by using `Some(x)`).
///
/// The traversal emits discovery and finish events for each reachable vertex,
/// and edge classification of each reachable edge. `visitor` is called for each
/// event, see [`DijkstraEvent`] for possible values.
///
/// The return value should implement the trait [`ControlFlow`], and can be used to change
/// the control flow of the search.
///
/// [`Control`](petgraph::visit::Control) Implements [`ControlFlow`] such that `Control::Continue` resumes the search.
/// `Control::Break` will stop the visit early, returning the contained value.
/// `Control::Prune` will stop traversing any additional edges from the current
/// node and proceed immediately to the `Finish` event.
///
/// There are implementations of [`ControlFlow`] for `()`, and [`Result<C, E>`] where
/// `C: ControlFlow`. The implementation for `()` will continue until finished.
/// For [`Result`], upon encountering an `E` it will break, otherwise acting the same as `C`.
///
/// ***Panics** if you attempt to prune a node from its `Finish` event.
///
/// The pseudo-code for the Dijkstra algorithm is listed below, with the annotated
/// event points, for which the given visitor object will be called with the
/// appropriate method.
///
/// ```norust
/// DIJKSTRA(G, source, weight)
/// for each vertex u in V
/// d[u] := infinity
/// p[u] := u
/// end for
/// d[source] := 0
/// INSERT(Q, source)
/// while (Q != Ø)
/// u := EXTRACT-MIN(Q) discover vertex u
/// for each vertex v in Adj[u] examine edge (u,v)
/// if (weight[(u,v)] + d[u] < d[v]) edge (u,v) relaxed
/// d[v] := weight[(u,v)] + d[u]
/// p[v] := u
/// DECREASE-KEY(Q, v)
/// else edge (u,v) not relaxed
/// ...
/// if (d[v] was originally infinity)
/// INSERT(Q, v)
/// end for finish vertex u
/// end while
/// ```
///
/// # Example returning [`Control`](petgraph::visit::Control).
///
/// Find the shortest path from vertex 0 to 5, and exit the visit as soon as
/// we reach the goal vertex.
///
/// ```
/// use rustworkx_core::petgraph::prelude::*;
/// use rustworkx_core::petgraph::graph::node_index as n;
/// use rustworkx_core::petgraph::visit::Control;
///
/// use rustworkx_core::traversal::{DijkstraEvent, dijkstra_search};
///
/// let gr: Graph<(), ()> = Graph::from_edges(&[
/// (0, 1), (0, 2), (0, 3), (0, 4),
/// (1, 3),
/// (2, 3), (2, 4),
/// (4, 5),
/// ]);
///
/// // record each predecessor, mapping node → node
/// let mut predecessor = vec![NodeIndex::end(); gr.node_count()];
/// let start = n(0);
/// let goal = n(5);
/// dijkstra_search(
/// &gr,
/// Some(start),
/// |edge| -> Result<usize, ()> {
/// Ok(1)
/// },
/// |event| {
/// match event {
/// DijkstraEvent::Discover(v, _) => {
/// if v == goal {
/// return Control::Break(v);
/// }
/// },
/// DijkstraEvent::EdgeRelaxed(u, v, _) => {
/// predecessor[v.index()] = u;
/// },
/// _ => {}
/// };
///
/// Control::Continue
/// },
/// ).unwrap();
///
/// let mut next = goal;
/// let mut path = vec![next];
/// while next != start {
/// let pred = predecessor[next.index()];
/// path.push(pred);
/// next = pred;
/// }
/// path.reverse();
/// assert_eq!(&path, &[n(0), n(4), n(5)]);
/// ```
pub fn dijkstra_search<G, I, F, K, E, H, C>(
graph: G,
starts: I,
mut edge_cost: F,
mut visitor: H,
) -> Result<C, E>
where
G: IntoEdges + Visitable,
G::NodeId: Eq + Hash,
I: IntoIterator<Item = G::NodeId>,
F: FnMut(G::EdgeRef) -> Result<K, E>,
K: Measure + Copy,
H: FnMut(DijkstraEvent<G::NodeId, &G::EdgeWeight, K>) -> C,
C: ControlFlow,
{
let visited = &mut graph.visit_map();
for start in starts {
// `dijkstra_visitor` returns a "signal" to either continue or exit early
// but it never "prunes", so we use `unreachable`.
try_control!(
dijkstra_visitor(graph, start, &mut edge_cost, &mut visitor, visited),
unreachable!()
);
}
Ok(C::continuing())
}
pub fn dijkstra_visitor<G, F, K, E, V, C>(
graph: G,
start: G::NodeId,
mut edge_cost: F,
mut visitor: V,
visited: &mut G::Map,
) -> Result<C, E>
where
G: IntoEdges + Visitable,
G::NodeId: Eq + Hash,
F: FnMut(G::EdgeRef) -> Result<K, E>,
K: Measure + Copy,
V: FnMut(DijkstraEvent<G::NodeId, &G::EdgeWeight, K>) -> C,
C: ControlFlow,
{
if visited.is_visited(&start) {
return Ok(C::continuing());
}
let mut scores = HashMap::new();
let mut visit_next = BinaryHeap::new();
let zero_score = K::default();
scores.insert(start, zero_score);
visit_next.push(MinScored(zero_score, start));
while let Some(MinScored(node_score, node)) = visit_next.pop() {
if !visited.visit(node) {
continue;
}
try_control_with_result!(visitor(DijkstraEvent::Discover(node, node_score)), continue);
for edge in graph.edges(node) {
let next = edge.target();
try_control_with_result!(
visitor(DijkstraEvent::ExamineEdge(node, next, edge.weight())),
continue
);
if visited.is_visited(&next) {
continue;
}
let cost = edge_cost(edge)?;
let next_score = node_score + cost;
match scores.entry(next) {
Occupied(ent) => {
if next_score < *ent.get() {
try_control_with_result!(
visitor(DijkstraEvent::EdgeRelaxed(node, next, edge.weight())),
continue
);
*ent.into_mut() = next_score;
visit_next.push(MinScored(next_score, next));
} else {
try_control_with_result!(
visitor(DijkstraEvent::EdgeNotRelaxed(node, next, edge.weight())),
continue
);
}
}
Vacant(ent) => {
try_control_with_result!(
visitor(DijkstraEvent::EdgeRelaxed(node, next, edge.weight())),
continue
);
ent.insert(next_score);
visit_next.push(MinScored(next_score, next));
}
}
}
try_control_with_result!(
visitor(DijkstraEvent::Finish(node)),
panic!("Pruning on the `DijkstraEvent::Finish` is not supported!")
);
}
Ok(C::continuing())
}