1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
use hashbrown::{HashMap, HashSet};
use petgraph::visit::{
EdgeCount, GraphBase, IntoNeighborsDirected, IntoNodeIdentifiers, NodeCount,
};
use petgraph::Direction::Outgoing;
use std::hash::Hash;
/// Return the first cycle encountered during DFS of a given directed graph.
/// Empty list is returned if no cycle is found.
///
/// Arguments:
///
/// * `graph` - The directed graph in which to find the first cycle.
/// * `source` - Optional node index for starting the search. If not specified,
/// an arbitrary node is chosen to start the search.
///
/// # Example
/// ```rust
/// use petgraph::prelude::*;
/// use rustworkx_core::connectivity::find_cycle;
///
/// let edge_list = vec![
/// (0, 1),
/// (3, 0),
/// (0, 5),
/// (8, 0),
/// (1, 2),
/// (1, 6),
/// (2, 3),
/// (3, 4),
/// (4, 5),
/// (6, 7),
/// (7, 8),
/// (8, 9),
/// ];
/// let graph = DiGraph::<i32, i32>::from_edges(&edge_list);
/// let mut res: Vec<(usize, usize)> = find_cycle(&graph, Some(NodeIndex::new(0)))
/// .iter()
/// .map(|(s, t)| (s.index(), t.index()))
/// .collect();
/// assert_eq!(res, [(0, 1), (1, 2), (2, 3), (3, 0)]);
/// ```
pub fn find_cycle<G>(graph: G, source: Option<G::NodeId>) -> Vec<(G::NodeId, G::NodeId)>
where
G: GraphBase,
G: NodeCount,
G: EdgeCount,
for<'b> &'b G: GraphBase<NodeId = G::NodeId> + IntoNodeIdentifiers + IntoNeighborsDirected,
G::NodeId: Eq + Hash,
{
// Find a cycle in the given graph and return it as a list of edges
let mut graph_nodes: HashSet<G::NodeId> = graph.node_identifiers().collect();
let mut cycle: Vec<(G::NodeId, G::NodeId)> = Vec::with_capacity(graph.edge_count());
let temp_value: G::NodeId;
// If source is not set get an arbitrary node from the set of graph
// nodes we've not "examined"
let source_index = match source {
Some(source_value) => source_value,
None => {
temp_value = *graph_nodes.iter().next().unwrap();
graph_nodes.remove(&temp_value);
temp_value
}
};
// Stack (ie "pushdown list") of vertices already in the spanning tree
let mut stack: Vec<G::NodeId> = vec![source_index];
// map to store parent of a node
let mut pred: HashMap<G::NodeId, G::NodeId> = HashMap::new();
// a node is in the visiting set if at least one of its child is unexamined
let mut visiting = HashSet::new();
// a node is in visited set if all of its children have been examined
let mut visited = HashSet::new();
while !stack.is_empty() {
let mut z = *stack.last().unwrap();
visiting.insert(z);
let children = graph.neighbors_directed(z, Outgoing);
for child in children {
//cycle is found
if visiting.contains(&child) {
cycle.push((z, child));
//backtrack
loop {
if z == child {
cycle.reverse();
break;
}
cycle.push((pred[&z], z));
z = pred[&z];
}
return cycle;
}
//if an unexplored node is encountered
if !visited.contains(&child) {
stack.push(child);
pred.insert(child, z);
}
}
let top = *stack.last().unwrap();
//if no further children and explored, move to visited
if top == z {
stack.pop();
visiting.remove(&z);
visited.insert(z);
}
}
cycle
}
#[cfg(test)]
mod tests {
use crate::connectivity::find_cycle;
use petgraph::prelude::*;
#[test]
fn test_find_cycle_source() {
let edge_list = vec![
(0, 1),
(3, 0),
(0, 5),
(8, 0),
(1, 2),
(1, 6),
(2, 3),
(3, 4),
(4, 5),
(6, 7),
(7, 8),
(8, 9),
];
let graph = DiGraph::<i32, i32>::from_edges(edge_list);
let mut res: Vec<(usize, usize)> = find_cycle(&graph, Some(NodeIndex::new(0)))
.iter()
.map(|(s, t)| (s.index(), t.index()))
.collect();
assert_eq!(res, [(0, 1), (1, 2), (2, 3), (3, 0)]);
res = find_cycle(&graph, Some(NodeIndex::new(1)))
.iter()
.map(|(s, t)| (s.index(), t.index()))
.collect();
assert_eq!(res, [(1, 2), (2, 3), (3, 0), (0, 1)]);
res = find_cycle(&graph, Some(NodeIndex::new(5)))
.iter()
.map(|(s, t)| (s.index(), t.index()))
.collect();
assert_eq!(res, []);
}
#[test]
fn test_self_loop() {
let edge_list = vec![
(0, 1),
(3, 0),
(0, 5),
(8, 0),
(1, 2),
(1, 6),
(2, 3),
(3, 4),
(4, 5),
(6, 7),
(7, 8),
(8, 9),
];
let mut graph = DiGraph::<i32, i32>::from_edges(edge_list);
graph.add_edge(NodeIndex::new(1), NodeIndex::new(1), 0);
let res: Vec<(usize, usize)> = find_cycle(&graph, Some(NodeIndex::new(0)))
.iter()
.map(|(s, t)| (s.index(), t.index()))
.collect();
assert_eq!(res, [(1, 1)]);
}
}