1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
use petgraph::visit::{ControlFlow, EdgeRef, IntoEdges, VisitMap, Visitable};
use std::collections::VecDeque;
use super::try_control;
/// A breadth first search (BFS) visitor event.
#[derive(Copy, Clone, Debug)]
pub enum BfsEvent<N, E> {
Discover(N),
/// An edge of the tree formed by the traversal.
TreeEdge(N, N, E),
/// An edge that does not belong to the tree.
NonTreeEdge(N, N, E),
/// For an edge *(u, v)*, if node *v* is currently in the queue
/// at the time of examination, then it is a gray-target edge.
GrayTargetEdge(N, N, E),
/// For an edge *(u, v)*, if node *v* has been removed from the queue
/// at the time of examination, then it is a black-target edge.
BlackTargetEdge(N, N, E),
/// All edges from a node have been reported.
Finish(N),
}
/// An iterative breadth first search.
///
/// Starting points are the nodes in the iterator `starts` (specify just one
/// start vertex *x* by using `Some(x)`).
///
/// The traversal emits discovery and finish events for each reachable vertex,
/// and edge classification of each reachable edge. `visitor` is called for each
/// event, see [`BfsEvent`] for possible values.
///
/// The return value should implement the trait [`ControlFlow`], and can be used to change
/// the control flow of the search.
///
/// [`Control`](petgraph::visit::Control) Implements [`ControlFlow`] such that `Control::Continue` resumes the search.
/// `Control::Break` will stop the visit early, returning the contained value.
/// `Control::Prune` will stop traversing any additional edges from the current
/// node and proceed immediately to the `Finish` event.
///
/// There are implementations of [`ControlFlow`] for `()`, and [`Result<C, E>`] where
/// `C: ControlFlow`. The implementation for `()` will continue until finished.
/// For [`Result`], upon encountering an `E` it will break, otherwise acting the same as `C`.
///
/// ***Panics** if you attempt to prune a node from its `Finish` event.
///
/// The pseudo-code for the BFS algorithm is listed below, with the annotated
/// event points, for which the given visitor object will be called with the
/// appropriate method.
///
/// ```norust
/// BFS(G, s)
/// for each vertex u in V
/// color[u] := WHITE
/// end for
/// color[s] := GRAY
/// EQUEUE(Q, s) discover vertex s
/// while (Q != Ø)
/// u := DEQUEUE(Q)
/// for each vertex v in Adj[u] (u,v) is a tree edge
/// if (color[v] = WHITE)
/// color[v] = GRAY
/// else (u,v) is a non - tree edge
/// if (color[v] = GRAY) (u,v) has a gray target
/// ...
/// else if (color[v] = BLACK) (u,v) has a black target
/// ...
/// end for
/// color[u] := BLACK finish vertex u
/// end while
/// ```
///
/// # Example returning [`Control`](petgraph::visit::Control).
///
/// Find a path from vertex 0 to 5, and exit the visit as soon as we reach
/// the goal vertex.
///
/// ```
/// use rustworkx_core::petgraph::prelude::*;
/// use rustworkx_core::petgraph::graph::node_index as n;
/// use rustworkx_core::petgraph::visit::Control;
///
/// use rustworkx_core::traversal::{BfsEvent, breadth_first_search};
///
/// let gr: Graph<(), ()> = Graph::from_edges(&[
/// (0, 1), (0, 2), (0, 3),
/// (1, 3),
/// (2, 3), (2, 4),
/// (4, 0), (4, 5),
/// ]);
///
/// // record each predecessor, mapping node → node
/// let mut predecessor = vec![NodeIndex::end(); gr.node_count()];
/// let start = n(0);
/// let goal = n(5);
/// breadth_first_search(&gr, Some(start), |event| {
/// if let BfsEvent::TreeEdge(u, v, _) = event {
/// predecessor[v.index()] = u;
/// if v == goal {
/// return Control::Break(v);
/// }
/// }
/// Control::Continue
/// });
///
/// let mut next = goal;
/// let mut path = vec![next];
/// while next != start {
/// let pred = predecessor[next.index()];
/// path.push(pred);
/// next = pred;
/// }
/// path.reverse();
/// assert_eq!(&path, &[n(0), n(2), n(4), n(5)]);
/// ```
///
/// # Example returning a `Result`.
/// ```
/// use rustworkx_core::petgraph::graph::node_index as n;
/// use rustworkx_core::petgraph::prelude::*;
///
/// use rustworkx_core::traversal::{BfsEvent, breadth_first_search};
///
/// let gr: Graph<(), ()> = Graph::from_edges(&[(0, 1), (1, 2), (1, 1), (2, 1)]);
/// let start = n(0);
/// let mut non_tree_edges = 0;
///
/// #[derive(Debug)]
/// struct NonTreeEdgeFound {
/// source: NodeIndex,
/// target: NodeIndex,
/// }
///
/// // Stop the search, the first time a BackEdge is encountered.
/// let result = breadth_first_search(&gr, Some(start), |event| {
/// match event {
/// BfsEvent::NonTreeEdge(u, v, _) => {
/// non_tree_edges += 1;
/// // the implementation of ControlFlow for Result,
/// // treats this Err value as Continue::Break
/// Err(NonTreeEdgeFound {source: u, target: v})
/// }
/// // In the cases where Ok(()) is returned,
/// // Result falls back to the implementation of Control on the value ().
/// // In the case of (), this is to always return Control::Continue.
/// // continuing the search.
/// _ => Ok(()),
/// }
/// });
///
/// assert_eq!(non_tree_edges, 1);
/// println!("number of non-tree edges encountered: {}", non_tree_edges);
/// println!("non-tree edge: ({:?})", result.unwrap_err());
/// ```
pub fn breadth_first_search<G, I, F, C>(graph: G, starts: I, mut visitor: F) -> C
where
G: IntoEdges + Visitable,
I: IntoIterator<Item = G::NodeId>,
F: FnMut(BfsEvent<G::NodeId, &G::EdgeWeight>) -> C,
C: ControlFlow,
{
let discovered = &mut graph.visit_map();
let finished = &mut graph.visit_map();
for start in starts {
// `bfs_visitor` returns a "signal" to either continue or exit early
// but it never "prunes", so we use `unreachable`.
try_control!(
bfs_visitor(graph, start, &mut visitor, discovered, finished),
unreachable!()
);
}
C::continuing()
}
fn bfs_visitor<G, F, C>(
graph: G,
u: G::NodeId,
visitor: &mut F,
discovered: &mut G::Map,
finished: &mut G::Map,
) -> C
where
G: IntoEdges + Visitable,
F: FnMut(BfsEvent<G::NodeId, &G::EdgeWeight>) -> C,
C: ControlFlow,
{
if !discovered.visit(u) {
return C::continuing();
}
try_control!(visitor(BfsEvent::Discover(u)), {}, {
let mut stack: VecDeque<G::NodeId> = VecDeque::new();
stack.push_front(u);
while let Some(u) = stack.pop_front() {
for edge in graph.edges(u) {
let v = edge.target();
if !discovered.is_visited(&v) {
try_control!(visitor(BfsEvent::TreeEdge(u, v, edge.weight())), continue);
discovered.visit(v);
try_control!(visitor(BfsEvent::Discover(v)), continue);
stack.push_back(v);
} else {
// non - tree edge.
try_control!(
visitor(BfsEvent::NonTreeEdge(u, v, edge.weight())),
continue
);
if !finished.is_visited(&v) {
try_control!(
visitor(BfsEvent::GrayTargetEdge(u, v, edge.weight())),
continue
);
} else {
try_control!(
visitor(BfsEvent::BlackTargetEdge(u, v, edge.weight())),
continue
);
}
}
}
let first_finish = finished.visit(u);
debug_assert!(first_finish);
try_control!(
visitor(BfsEvent::Finish(u)),
panic!("Pruning on the `BfsEvent::Finish` is not supported!")
);
}
});
C::continuing()
}