1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
use rand::distributions::{Standard, Uniform};
use rand::prelude::*;
use rand_pcg::Pcg64;
use std::hash::Hash;
use hashbrown::HashMap;
use petgraph::stable_graph::{NodeIndex, StableGraph};
use petgraph::visit::{
EdgeCount, GraphBase, IntoEdges, IntoNeighborsDirected, IntoNodeIdentifiers, NodeCount,
NodeIndexable, Visitable,
};
use petgraph::Directed;
use petgraph::Direction::{Incoming, Outgoing};
use rayon::prelude::*;
use rayon_cond::CondIterator;
use crate::connectivity::find_cycle;
use crate::dictmap::*;
use crate::shortest_path::dijkstra;
use crate::traversal::dfs_edges;
type Swap = (NodeIndex, NodeIndex);
type Edge = (NodeIndex, NodeIndex);
struct TokenSwapper<G: GraphBase>
where
G::NodeId: Eq + Hash,
{
// The input graph
graph: G,
// The user-supplied mapping to use for swapping tokens
mapping: HashMap<G::NodeId, G::NodeId>,
// Number of trials
trials: usize,
// Seed for random selection of a node for a trial
seed: Option<u64>,
// Threshold for how many nodes will trigger parallel iterator
parallel_threshold: usize,
// Map of NodeId to NodeIndex
node_map: HashMap<G::NodeId, NodeIndex>,
// Map of NodeIndex to NodeId
rev_node_map: HashMap<NodeIndex, G::NodeId>,
}
impl<G> TokenSwapper<G>
where
G: NodeCount
+ EdgeCount
+ IntoEdges
+ Visitable
+ NodeIndexable
+ IntoNeighborsDirected
+ IntoNodeIdentifiers
+ Send
+ Sync,
G::NodeId: Hash + Eq + Send + Sync,
{
fn new(
graph: G,
mapping: HashMap<G::NodeId, G::NodeId>,
trials: Option<usize>,
seed: Option<u64>,
parallel_threshold: Option<usize>,
) -> Self {
TokenSwapper {
graph,
mapping,
trials: trials.unwrap_or(4),
seed,
parallel_threshold: parallel_threshold.unwrap_or(50),
node_map: HashMap::with_capacity(graph.node_count()),
rev_node_map: HashMap::with_capacity(graph.node_count()),
}
}
fn map(&mut self) -> Vec<Swap> {
let num_nodes = self.graph.node_bound();
let num_edges = self.graph.edge_count();
// Directed graph with nodes matching ``graph`` and
// edges for neighbors closer than nodes
let mut digraph = StableGraph::with_capacity(num_nodes, num_edges);
// First fill the digraph with nodes. Then since it's a stable graph,
// must go through and remove nodes that were removed in original graph
for _ in 0..self.graph.node_bound() {
digraph.add_node(());
}
let mut count: usize = 0;
for gnode in self.graph.node_identifiers() {
let gidx = self.graph.to_index(gnode);
if gidx != count {
for idx in count..gidx {
digraph.remove_node(NodeIndex::new(idx));
}
count = gidx;
}
count += 1;
}
// Create maps between NodeId and NodeIndex
for node in self.graph.node_identifiers() {
self.node_map
.insert(node, NodeIndex::new(self.graph.to_index(node)));
self.rev_node_map
.insert(NodeIndex::new(self.graph.to_index(node)), node);
}
// sub will become same as digraph but with no self edges in add_token_edges
let mut sub_digraph = digraph.clone();
// The mapping in HashMap form using NodeIndex
let mut tokens: HashMap<NodeIndex, NodeIndex> = self
.mapping
.iter()
.map(|(k, v)| (self.node_map[k], self.node_map[v]))
.collect();
// todo_nodes are all the mapping entries where left != right
let mut todo_nodes: Vec<NodeIndex> = tokens
.iter()
.filter_map(|(node, dest)| if node != dest { Some(*node) } else { None })
.collect();
todo_nodes.par_sort();
// Add initial edges to the digraph/sub_digraph
for node in self.graph.node_identifiers() {
self.add_token_edges(
self.node_map[&node],
&mut digraph,
&mut sub_digraph,
&mut tokens,
);
}
// First collect the self.trial number of random numbers
// into a Vec based on the given seed
let outer_rng: Pcg64 = match self.seed {
Some(rng_seed) => Pcg64::seed_from_u64(rng_seed),
None => Pcg64::from_entropy(),
};
let trial_seeds_vec: Vec<u64> =
outer_rng.sample_iter(&Standard).take(self.trials).collect();
CondIterator::new(
trial_seeds_vec,
self.graph.node_count() >= self.parallel_threshold,
)
.map(|trial_seed| {
self.trial_map(
digraph.clone(),
sub_digraph.clone(),
tokens.clone(),
todo_nodes.clone(),
trial_seed,
)
})
.min_by_key(|result| result.len())
.unwrap()
}
fn add_token_edges(
&self,
node: NodeIndex,
digraph: &mut StableGraph<(), (), Directed>,
sub_digraph: &mut StableGraph<(), (), Directed>,
tokens: &mut HashMap<NodeIndex, NodeIndex>,
) {
// Adds an edge to digraph if distance from the token to a neighbor is
// less than distance from token to node. sub_digraph is same except
// for self-edges.
if !(tokens.contains_key(&node)) {
return;
}
if tokens[&node] == node {
digraph.update_edge(node, node, ());
return;
}
let id_node = self.rev_node_map[&node];
let id_token = self.rev_node_map[&tokens[&node]];
for id_neighbor in self.graph.neighbors(id_node) {
let neighbor = self.node_map[&id_neighbor];
let dist_neighbor: DictMap<G::NodeId, usize> = dijkstra(
&self.graph,
id_neighbor,
Some(id_token),
|_| Ok::<usize, &str>(1),
None,
)
.unwrap();
let dist_node: DictMap<G::NodeId, usize> = dijkstra(
&self.graph,
id_node,
Some(id_token),
|_| Ok::<usize, &str>(1),
None,
)
.unwrap();
if dist_neighbor[&id_token] < dist_node[&id_token] {
digraph.update_edge(node, neighbor, ());
sub_digraph.update_edge(node, neighbor, ());
}
}
}
fn trial_map(
&self,
mut digraph: StableGraph<(), (), Directed>,
mut sub_digraph: StableGraph<(), (), Directed>,
mut tokens: HashMap<NodeIndex, NodeIndex>,
mut todo_nodes: Vec<NodeIndex>,
trial_seed: u64,
) -> Vec<Swap> {
// Create a random trial list of swaps to move tokens to optimal positions
let mut steps = 0;
let mut swap_edges: Vec<Swap> = vec![];
let mut rng_seed: Pcg64 = Pcg64::seed_from_u64(trial_seed);
while !todo_nodes.is_empty() && steps <= 4 * digraph.node_count().pow(2) {
// Choose a random todo_node
let between = Uniform::new(0, todo_nodes.len());
let random: usize = between.sample(&mut rng_seed);
let todo_node = todo_nodes[random];
// If there's a cycle in sub_digraph, add it to swap_edges and do swap
let cycle = find_cycle(&sub_digraph, Some(todo_node));
if !cycle.is_empty() {
for edge in cycle[1..].iter().rev() {
swap_edges.push(*edge);
self.swap(
edge.0,
edge.1,
&mut digraph,
&mut sub_digraph,
&mut tokens,
&mut todo_nodes,
);
}
steps += cycle.len() - 1;
// If there's no cycle, see if there's an edge target that matches a token key.
// If so, add to swap_edges and do swap
} else {
let mut found = false;
let sub2 = &sub_digraph.clone();
for edge in dfs_edges(sub2, Some(todo_node)) {
let new_edge = (NodeIndex::new(edge.0), NodeIndex::new(edge.1));
if !tokens.contains_key(&new_edge.1) {
swap_edges.push(new_edge);
self.swap(
new_edge.0,
new_edge.1,
&mut digraph,
&mut sub_digraph,
&mut tokens,
&mut todo_nodes,
);
steps += 1;
found = true;
break;
}
}
// If none found, look for cycle in digraph which will result in
// an unhappy node. Look for a predecessor and add node and pred
// to swap_edges and do swap
if !found {
let cycle: Vec<Edge> = find_cycle(&digraph, Some(todo_node));
let unhappy_node = cycle[0].0;
let mut found = false;
let di2 = &mut digraph.clone();
for predecessor in di2.neighbors_directed(unhappy_node, Incoming) {
if predecessor != unhappy_node {
swap_edges.push((unhappy_node, predecessor));
self.swap(
unhappy_node,
predecessor,
&mut digraph,
&mut sub_digraph,
&mut tokens,
&mut todo_nodes,
);
steps += 1;
found = true;
break;
}
}
assert!(
found,
"The token swap process has ended unexpectedly, this points to a bug in rustworkx, please open an issue."
);
}
}
}
assert!(
todo_nodes.is_empty(),
"The output final swap map is incomplete, this points to a bug in rustworkx, please open an issue."
);
swap_edges
}
fn swap(
&self,
node1: NodeIndex,
node2: NodeIndex,
digraph: &mut StableGraph<(), (), Directed>,
sub_digraph: &mut StableGraph<(), (), Directed>,
tokens: &mut HashMap<NodeIndex, NodeIndex>,
todo_nodes: &mut Vec<NodeIndex>,
) {
// Get token values for the 2 nodes and remove them
let token1 = tokens.remove(&node1);
let token2 = tokens.remove(&node2);
// Swap the token edge values
if let Some(t2) = token2 {
tokens.insert(node1, t2);
}
if let Some(t1) = token1 {
tokens.insert(node2, t1);
}
// For each node, remove the (node, successor) from digraph and
// sub_digraph. Then add new token edges back in.
for node in [node1, node2] {
let edge_nodes: Vec<(NodeIndex, NodeIndex)> = digraph
.neighbors_directed(node, Outgoing)
.map(|successor| (node, successor))
.collect();
for (edge_node1, edge_node2) in edge_nodes {
let edge = digraph.find_edge(edge_node1, edge_node2).unwrap();
digraph.remove_edge(edge);
}
let edge_nodes: Vec<(NodeIndex, NodeIndex)> = sub_digraph
.neighbors_directed(node, Outgoing)
.map(|successor| (node, successor))
.collect();
for (edge_node1, edge_node2) in edge_nodes {
let edge = sub_digraph.find_edge(edge_node1, edge_node2).unwrap();
sub_digraph.remove_edge(edge);
}
self.add_token_edges(node, digraph, sub_digraph, tokens);
// If a node is a token key and not equal to the value, add it to todo_nodes
if tokens.contains_key(&node) && tokens[&node] != node {
if !todo_nodes.contains(&node) {
todo_nodes.push(node);
}
// Otherwise if node is in todo_nodes, remove it
} else if todo_nodes.contains(&node) {
todo_nodes.swap_remove(todo_nodes.iter().position(|x| *x == node).unwrap());
}
}
}
}
/// Module to perform an approximately optimal Token Swapping algorithm. Supports partial
/// mappings (i.e. not-permutations) for graphs with missing tokens.
///
/// Based on the paper: Approximation and Hardness for Token Swapping by Miltzow et al. (2016)
/// ArXiV: <https://arxiv.org/abs/1602.05150>
///
/// Arguments:
///
/// * `graph` - The graph on which to perform the token swapping.
/// * `mapping` - A partial mapping to be implemented in swaps.
/// * `trials` - Optional number of trials. If None, defaults to 4.
/// * `seed` - Optional integer seed. If None, the internal rng will be initialized from system entropy.
/// * `parallel_threshold` - Optional integer for the number of nodes in the graph that will
/// trigger the use of parallel threads. If the number of nodes in the graph is less than this value
/// it will run in a single thread. The default value is 50.
///
/// It returns a list of tuples representing the swaps to perform.
///
/// This function is multithreaded and will launch a thread pool with threads equal to
/// the number of CPUs by default. You can tune the number of threads with
/// the ``RAYON_NUM_THREADS`` environment variable. For example, setting ``RAYON_NUM_THREADS=4``
/// would limit the thread pool to 4 threads.
///
/// # Example
/// ```rust
/// use hashbrown::HashMap;
/// use rustworkx_core::petgraph;
/// use rustworkx_core::token_swapper::token_swapper;
/// use rustworkx_core::petgraph::graph::NodeIndex;
///
/// let g = petgraph::graph::UnGraph::<(), ()>::from_edges(&[(0, 1), (1, 2), (2, 3)]);
/// let mapping = HashMap::from([
/// (NodeIndex::new(0), NodeIndex::new(0)),
/// (NodeIndex::new(1), NodeIndex::new(3)),
/// (NodeIndex::new(3), NodeIndex::new(1)),
/// (NodeIndex::new(2), NodeIndex::new(2)),
/// ]);
/// // Do the token swap
/// let output = token_swapper(&g, mapping, Some(4), Some(4), Some(50));
/// assert_eq!(3, output.len());
///
/// ```
pub fn token_swapper<G>(
graph: G,
mapping: HashMap<G::NodeId, G::NodeId>,
trials: Option<usize>,
seed: Option<u64>,
parallel_threshold: Option<usize>,
) -> Vec<Swap>
where
G: NodeCount
+ EdgeCount
+ IntoEdges
+ Visitable
+ NodeIndexable
+ IntoNeighborsDirected
+ IntoNodeIdentifiers
+ Send
+ Sync,
G::NodeId: Hash + Eq + Send + Sync,
{
let mut swapper = TokenSwapper::new(graph, mapping, trials, seed, parallel_threshold);
swapper.map()
}
#[cfg(test)]
mod test_token_swapper {
use crate::petgraph;
use crate::token_swapper::token_swapper;
use hashbrown::HashMap;
use petgraph::graph::NodeIndex;
fn do_swap(mapping: &mut HashMap<NodeIndex, NodeIndex>, swaps: &Vec<(NodeIndex, NodeIndex)>) {
// Apply the swaps to the mapping to get final result
for (swap1, swap2) in swaps {
//Need to create temp nodes in case of partial mapping
let mut temp_node1: Option<NodeIndex> = None;
let mut temp_node2: Option<NodeIndex> = None;
if mapping.contains_key(swap1) {
temp_node1 = Some(mapping[swap1]);
mapping.remove(swap1);
}
if mapping.contains_key(swap2) {
temp_node2 = Some(mapping[swap2]);
mapping.remove(swap2);
}
if let Some(t1) = temp_node1 {
mapping.insert(*swap2, t1);
}
if let Some(t2) = temp_node2 {
mapping.insert(*swap1, t2);
}
}
}
#[test]
fn test_simple_swap() {
// Simple arbitrary swap
let g = petgraph::graph::UnGraph::<(), ()>::from_edges(&[(0, 1), (1, 2), (2, 3)]);
let mapping = HashMap::from([
(NodeIndex::new(0), NodeIndex::new(0)),
(NodeIndex::new(1), NodeIndex::new(3)),
(NodeIndex::new(3), NodeIndex::new(1)),
(NodeIndex::new(2), NodeIndex::new(2)),
]);
let swaps = token_swapper(&g, mapping, Some(4), Some(4), Some(50));
assert_eq!(3, swaps.len());
}
#[test]
fn test_small_swap() {
// Reverse all small swap
let g = petgraph::graph::UnGraph::<(), ()>::from_edges(&[
(0, 1),
(1, 2),
(2, 3),
(3, 4),
(4, 5),
(5, 6),
(6, 7),
]);
let mut mapping = HashMap::with_capacity(8);
for i in 0..8 {
mapping.insert(NodeIndex::new(i), NodeIndex::new(7 - i));
}
// Do the token swap
let mut new_map = mapping.clone();
let swaps = token_swapper(&g, mapping, Some(4), Some(4), Some(50));
do_swap(&mut new_map, &swaps);
let mut expected = HashMap::with_capacity(8);
for i in 0..8 {
expected.insert(NodeIndex::new(i), NodeIndex::new(i));
}
assert_eq!(expected, new_map);
}
#[test]
fn test_happy_swap_chain() {
// Reverse all happy swap chain > 2
let g = petgraph::graph::UnGraph::<(), ()>::from_edges(&[
(0, 1),
(0, 2),
(0, 3),
(0, 4),
(1, 2),
(1, 3),
(1, 4),
(2, 3),
(2, 4),
(3, 4),
(3, 6),
]);
let mapping = HashMap::from([
(NodeIndex::new(0), NodeIndex::new(4)),
(NodeIndex::new(1), NodeIndex::new(0)),
(NodeIndex::new(2), NodeIndex::new(3)),
(NodeIndex::new(3), NodeIndex::new(6)),
(NodeIndex::new(4), NodeIndex::new(2)),
(NodeIndex::new(6), NodeIndex::new(1)),
]);
// Do the token swap
let mut new_map = mapping.clone();
let swaps = token_swapper(&g, mapping, Some(4), Some(4), Some(50));
do_swap(&mut new_map, &swaps);
let mut expected = HashMap::with_capacity(6);
for i in (0..5).chain(6..7) {
expected.insert(NodeIndex::new(i), NodeIndex::new(i));
}
assert_eq!(expected, new_map);
}
#[test]
fn test_partial_simple() {
// Simple partial swap
let g = petgraph::graph::UnGraph::<(), ()>::from_edges(&[(0, 1), (1, 2), (2, 3)]);
let mapping = HashMap::from([(NodeIndex::new(0), NodeIndex::new(3))]);
let mut new_map = mapping.clone();
let swaps = token_swapper(&g, mapping, Some(4), Some(4), Some(1));
do_swap(&mut new_map, &swaps);
let mut expected = HashMap::with_capacity(4);
expected.insert(NodeIndex::new(3), NodeIndex::new(3));
assert_eq!(expected, new_map);
}
#[test]
fn test_partial_simple_remove_node() {
// Simple partial swap
let mut g =
petgraph::graph::UnGraph::<(), ()>::from_edges(&[(0, 1), (1, 2), (2, 3), (3, 4)]);
let mapping = HashMap::from([(NodeIndex::new(0), NodeIndex::new(3))]);
g.remove_node(NodeIndex::new(2));
g.add_edge(NodeIndex::new(1), NodeIndex::new(3), ());
let mut new_map = mapping.clone();
let swaps = token_swapper(&g, mapping, Some(4), Some(4), Some(1));
do_swap(&mut new_map, &swaps);
let mut expected = HashMap::with_capacity(4);
expected.insert(NodeIndex::new(3), NodeIndex::new(3));
assert_eq!(expected, new_map);
}
#[test]
fn test_partial_small() {
// Partial inverting on small path graph
let g = petgraph::graph::UnGraph::<(), ()>::from_edges(&[(0, 1), (1, 2), (2, 3)]);
let mapping = HashMap::from([
(NodeIndex::new(0), NodeIndex::new(3)),
(NodeIndex::new(1), NodeIndex::new(2)),
]);
let mut new_map = mapping.clone();
let swaps = token_swapper(&g, mapping, Some(4), Some(4), Some(50));
do_swap(&mut new_map, &swaps);
let expected = HashMap::from([
(NodeIndex::new(2), NodeIndex::new(2)),
(NodeIndex::new(3), NodeIndex::new(3)),
]);
assert_eq!(5, swaps.len());
assert_eq!(expected, new_map);
}
#[test]
fn test_large_partial_random() {
// Test a random (partial) mapping on a large randomly generated graph
use crate::generators::gnm_random_graph;
use rand::prelude::*;
use rand_pcg::Pcg64;
use std::iter::zip;
let mut rng: Pcg64 = Pcg64::seed_from_u64(4);
// Note that graph may have "gaps" in the node counts, i.e. the numbering is noncontiguous.
let size = 100;
let mut g: petgraph::stable_graph::StableGraph<(), ()> =
gnm_random_graph(size, size.pow(2) / 10, Some(4), || (), || ()).unwrap();
// Remove self-loops
let nodes: Vec<_> = g.node_indices().collect();
for node in nodes {
let edge = g.find_edge(node, node);
if edge.is_some() {
g.remove_edge(edge.unwrap());
}
}
// Make sure the graph is connected by adding C_n
for i in 0..(g.node_count() - 1) {
g.add_edge(NodeIndex::new(i), NodeIndex::new(i + 1), ());
}
// Get node indices and randomly shuffle
let mut mapped_nodes: Vec<usize> = g.node_indices().map(|node| node.index()).collect();
let nodes = mapped_nodes.clone();
mapped_nodes.shuffle(&mut rng);
// Zip nodes and shuffled nodes and remove every other one
let mut mapping: Vec<(usize, usize)> = zip(nodes, mapped_nodes).collect();
mapping.retain(|(a, _)| a % 2 == 0);
// Convert mapping to HashMap of NodeIndex's
let mapping: HashMap<NodeIndex, NodeIndex> = mapping
.into_iter()
.map(|(a, b)| (NodeIndex::new(a), NodeIndex::new(b)))
.collect();
let mut new_map = mapping.clone();
let expected: HashMap<NodeIndex, NodeIndex> =
mapping.values().map(|val| (*val, *val)).collect();
let swaps = token_swapper(&g, mapping, Some(4), Some(4), Some(50));
do_swap(&mut new_map, &swaps);
assert_eq!(expected, new_map)
}
}