1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.

use std::cmp::Eq;
use std::hash::Hash;

use hashbrown::HashMap;

use petgraph::visit::{
    GraphProp, IntoEdges, IntoNodeIdentifiers, NodeCount, NodeIndexable, VisitMap, Visitable,
};
use petgraph::Undirected;

use crate::traversal::{depth_first_search, DfsEvent};

fn _build_chain<G, VM: VisitMap<G::NodeId>>(
    graph: G,
    parent: &[usize],
    mut u_id: G::NodeId,
    mut v_id: G::NodeId,
    visited: &mut VM,
) -> Vec<(G::NodeId, G::NodeId)>
where
    G: Visitable + NodeIndexable,
{
    let mut chain = Vec::new();
    while visited.visit(v_id) {
        chain.push((u_id, v_id));
        u_id = v_id;
        let u = graph.to_index(u_id);
        let v = parent[u];
        v_id = graph.from_index(v);
    }
    chain.push((u_id, v_id));

    chain
}

/// Returns the chain decomposition of a graph.
///
/// The *chain decomposition* of a graph with respect to a depth-first
/// search tree is a set of cycles or paths derived from the set of
/// fundamental cycles of the tree in the following manner. Consider
/// each fundamental cycle with respect to the given tree, represented
/// as a list of edges beginning with the nontree edge oriented away
/// from the root of the tree. For each fundamental cycle, if it
/// overlaps with any previous fundamental cycle, just take the initial
/// non-overlapping segment, which is a path instead of a cycle. Each
/// cycle or path is called a *chain*. For more information,
/// see [`Schmidt`](https://doi.org/10.1016/j.ipl.2013.01.016).
///
/// The graph should be undirected. If `source` is specified only the chain
/// decomposition for the connected component containing this node will be returned.
/// This node indicates the root of the depth-first search tree. If it's not
/// specified, a source will be chosen arbitrarly and repeated until all components
/// of the graph are searched.
///
/// Returns a list of list of edges where each inner list is a chain.
///
/// # Note
/// The function implicitly assumes that there are no parallel edges
/// or self loops. It may produce incorrect/unexpected results if the
/// input graph has self loops or parallel edges.
///
/// # Example
/// ```rust
/// use rustworkx_core::connectivity::chain_decomposition;
/// use rustworkx_core::petgraph::graph::{NodeIndex, UnGraph};
///
/// let mut graph : UnGraph<(), ()> = UnGraph::new_undirected();
/// let a = graph.add_node(()); // node with no weight
/// let b = graph.add_node(());
/// let c = graph.add_node(());
/// let d = graph.add_node(());
/// let e = graph.add_node(());
/// let f = graph.add_node(());
/// let g = graph.add_node(());
/// let h = graph.add_node(());
///
/// graph.extend_with_edges(&[
///     (a, b),
///     (b, c),
///     (c, d),
///     (d, a),
///     (e, f),
///     (b, e),
///     (f, g),
///     (g, h),
///     (h, e)
/// ]);
/// // a ---- b ---- e ---- f
/// // |      |      |      |
/// // d ---- c      h ---- g
///
/// let chains = chain_decomposition(&graph, None);
/// assert_eq!(
///     chains,
///     vec![
///         vec![(a, d), (d, c), (c, b), (b, a)],
///         vec![(e, h), (h, g), (g, f), (f, e)]
///     ]
/// );
/// ```
pub fn chain_decomposition<G>(
    graph: G,
    source: Option<G::NodeId>,
) -> Vec<Vec<(G::NodeId, G::NodeId)>>
where
    G: IntoNodeIdentifiers
        + IntoEdges
        + Visitable
        + NodeIndexable
        + NodeCount
        + GraphProp<EdgeType = Undirected>,
    G::NodeId: Eq + Hash,
{
    let roots = match source {
        Some(node) => vec![node],
        None => graph.node_identifiers().collect(),
    };

    let mut parent = vec![std::usize::MAX; graph.node_bound()];
    let mut back_edges: HashMap<G::NodeId, Vec<G::NodeId>> = HashMap::new();

    // depth-first-index (DFI) ordered nodes.
    let mut nodes = Vec::with_capacity(graph.node_count());
    depth_first_search(graph, roots, |event| match event {
        DfsEvent::Discover(u, _) => {
            nodes.push(u);
        }
        DfsEvent::TreeEdge(u, v, _) => {
            let u = graph.to_index(u);
            let v = graph.to_index(v);
            parent[v] = u;
        }
        DfsEvent::BackEdge(u_id, v_id, _) => {
            let u = graph.to_index(u_id);
            let v = graph.to_index(v_id);

            // do *not* consider ``(u, v)`` as a back edge if ``(v, u)`` is a tree edge.
            if parent[u] != v {
                back_edges
                    .entry(v_id)
                    .and_modify(|v_edges| v_edges.push(u_id))
                    .or_insert(vec![u_id]);
            }
        }
        _ => {}
    });

    let visited = &mut graph.visit_map();
    nodes
        .into_iter()
        .filter_map(|u| {
            visited.visit(u);
            back_edges.get(&u).map(|vs| {
                vs.iter()
                    .map(|v| _build_chain(graph, &parent, u, *v, visited))
                    .collect::<Vec<Vec<(G::NodeId, G::NodeId)>>>()
            })
        })
        .flatten()
        .collect()
}

#[cfg(test)]
mod tests {
    use super::*;
    use petgraph::graph::node_index as ni;
    use petgraph::prelude::*;

    #[test]
    fn test_decomposition() {
        let graph = UnGraph::<(), ()>::from_edges(&[
            //  DFS tree edges.
            (1, 2),
            (2, 3),
            (3, 4),
            (3, 5),
            (5, 6),
            (6, 7),
            (7, 8),
            (5, 9),
            (9, 10),
            //  Nontree edges.
            (1, 3),
            (1, 4),
            (2, 5),
            (5, 10),
            (6, 8),
        ]);

        let chains = chain_decomposition(&graph, Some(NodeIndex::new(1)));

        let expected: Vec<Vec<(NodeIndex<usize>, NodeIndex<usize>)>> = vec![
            vec![(ni(1), ni(3)), (ni(3), ni(2)), (ni(2), ni(1))],
            vec![(ni(1), ni(4)), (ni(4), ni(3))],
            vec![(ni(2), ni(5)), (ni(5), ni(3))],
            vec![(ni(5), ni(10)), (ni(10), ni(9)), (ni(9), ni(5))],
            vec![(ni(6), ni(8)), (ni(8), ni(7)), (ni(7), ni(6))],
        ];
        assert_eq!(chains.len(), expected.len());
    }
}