1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.

use petgraph::visit::{ControlFlow, EdgeRef, IntoEdges, VisitMap, Visitable};
use std::collections::VecDeque;

use super::try_control;

/// A breadth first search (BFS) visitor event.
#[derive(Copy, Clone, Debug)]
pub enum BfsEvent<N, E> {
    Discover(N),
    /// An edge of the tree formed by the traversal.
    TreeEdge(N, N, E),
    /// An edge that does not belong to the tree.
    NonTreeEdge(N, N, E),
    /// For an edge *(u, v)*, if node *v* is currently in the queue
    /// at the time of examination, then it is a gray-target edge.
    GrayTargetEdge(N, N, E),
    /// For an edge *(u, v)*, if node *v* has been removed from the queue
    /// at the time of examination, then it is a black-target edge.
    BlackTargetEdge(N, N, E),
    /// All edges from a node have been reported.
    Finish(N),
}

/// An iterative breadth first search.
///
/// Starting points are the nodes in the iterator `starts` (specify just one
/// start vertex *x* by using `Some(x)`).
///
/// The traversal emits discovery and finish events for each reachable vertex,
/// and edge classification of each reachable edge. `visitor` is called for each
/// event, see [`BfsEvent`] for possible values.
///
/// The return value should implement the trait [`ControlFlow`], and can be used to change
/// the control flow of the search.
///
/// [`Control`](petgraph::visit::Control) Implements [`ControlFlow`] such that `Control::Continue` resumes the search.
/// `Control::Break` will stop the visit early, returning the contained value.
/// `Control::Prune` will stop traversing any additional edges from the current
/// node and proceed immediately to the `Finish` event.
///
/// There are implementations of [`ControlFlow`] for `()`, and [`Result<C, E>`] where
/// `C: ControlFlow`. The implementation for `()` will continue until finished.
/// For [`Result`], upon encountering an `E` it will break, otherwise acting the same as `C`.
///
/// ***Panics** if you attempt to prune a node from its `Finish` event.
///
/// The pseudo-code for the BFS algorithm is listed below, with the annotated
/// event points, for which the given visitor object will be called with the
/// appropriate method.
///
/// ```norust
/// BFS(G, s)
///   for each vertex u in V
///       color[u] := WHITE
///   end for
///   color[s] := GRAY
///   EQUEUE(Q, s)                             discover vertex s
///   while (Q != Ø)
///       u := DEQUEUE(Q)
///       for each vertex v in Adj[u]          (u,v) is a tree edge
///           if (color[v] = WHITE)
///               color[v] = GRAY
///           else                             (u,v) is a non - tree edge
///               if (color[v] = GRAY)         (u,v) has a gray target
///                   ...
///               else if (color[v] = BLACK)   (u,v) has a black target
///                   ...
///       end for
///       color[u] := BLACK                    finish vertex u
///   end while
/// ```
///
/// # Example returning [`Control`](petgraph::visit::Control).
///
/// Find a path from vertex 0 to 5, and exit the visit as soon as we reach
/// the goal vertex.
///
/// ```
/// use rustworkx_core::petgraph::prelude::*;
/// use rustworkx_core::petgraph::graph::node_index as n;
/// use rustworkx_core::petgraph::visit::Control;
///
/// use rustworkx_core::traversal::{BfsEvent, breadth_first_search};
///
/// let gr: Graph<(), ()> = Graph::from_edges(&[
///     (0, 1), (0, 2), (0, 3),
///     (1, 3),
///     (2, 3), (2, 4),
///     (4, 0), (4, 5),
/// ]);
///
/// // record each predecessor, mapping node → node
/// let mut predecessor = vec![NodeIndex::end(); gr.node_count()];
/// let start = n(0);
/// let goal = n(5);
/// breadth_first_search(&gr, Some(start), |event| {
///     if let BfsEvent::TreeEdge(u, v, _) = event {
///         predecessor[v.index()] = u;
///         if v == goal {
///             return Control::Break(v);
///         }
///     }
///     Control::Continue
/// });
///
/// let mut next = goal;
/// let mut path = vec![next];
/// while next != start {
///     let pred = predecessor[next.index()];
///     path.push(pred);
///     next = pred;
/// }
/// path.reverse();
/// assert_eq!(&path, &[n(0), n(2), n(4), n(5)]);
/// ```
///
/// # Example returning a `Result`.
/// ```
/// use rustworkx_core::petgraph::graph::node_index as n;
/// use rustworkx_core::petgraph::prelude::*;
///
/// use rustworkx_core::traversal::{BfsEvent, breadth_first_search};
///
/// let gr: Graph<(), ()> = Graph::from_edges(&[(0, 1), (1, 2), (1, 1), (2, 1)]);
/// let start = n(0);
/// let mut non_tree_edges = 0;
///
/// #[derive(Debug)]
/// struct NonTreeEdgeFound {
///     source: NodeIndex,
///     target: NodeIndex,
/// }
///
/// // Stop the search, the first time a BackEdge is encountered.
/// let result = breadth_first_search(&gr, Some(start), |event| {
///     match event {
///         BfsEvent::NonTreeEdge(u, v, _) => {
///             non_tree_edges += 1;
///             // the implementation of ControlFlow for Result,
///             // treats this Err value as Continue::Break
///             Err(NonTreeEdgeFound {source: u, target: v})
///         }
///         // In the cases where Ok(()) is returned,
///         // Result falls back to the implementation of Control on the value ().
///         // In the case of (), this is to always return Control::Continue.
///         // continuing the search.
///         _ => Ok(()),
///     }
/// });
///
/// assert_eq!(non_tree_edges, 1);
/// println!("number of non-tree edges encountered: {}", non_tree_edges);
/// println!("non-tree edge: ({:?})", result.unwrap_err());
/// ```
pub fn breadth_first_search<G, I, F, C>(graph: G, starts: I, mut visitor: F) -> C
where
    G: IntoEdges + Visitable,
    I: IntoIterator<Item = G::NodeId>,
    F: FnMut(BfsEvent<G::NodeId, &G::EdgeWeight>) -> C,
    C: ControlFlow,
{
    let discovered = &mut graph.visit_map();
    let finished = &mut graph.visit_map();

    for start in starts {
        // `bfs_visitor` returns a "signal" to either continue or exit early
        // but it never "prunes", so we use `unreachable`.
        try_control!(
            bfs_visitor(graph, start, &mut visitor, discovered, finished),
            unreachable!()
        );
    }
    C::continuing()
}

fn bfs_visitor<G, F, C>(
    graph: G,
    u: G::NodeId,
    visitor: &mut F,
    discovered: &mut G::Map,
    finished: &mut G::Map,
) -> C
where
    G: IntoEdges + Visitable,
    F: FnMut(BfsEvent<G::NodeId, &G::EdgeWeight>) -> C,
    C: ControlFlow,
{
    if !discovered.visit(u) {
        return C::continuing();
    }

    try_control!(visitor(BfsEvent::Discover(u)), {}, {
        let mut stack: VecDeque<G::NodeId> = VecDeque::new();
        stack.push_front(u);

        while let Some(u) = stack.pop_front() {
            for edge in graph.edges(u) {
                let v = edge.target();
                if !discovered.is_visited(&v) {
                    try_control!(visitor(BfsEvent::TreeEdge(u, v, edge.weight())), continue);
                    discovered.visit(v);
                    try_control!(visitor(BfsEvent::Discover(v)), continue);
                    stack.push_back(v);
                } else {
                    // non - tree edge.
                    try_control!(
                        visitor(BfsEvent::NonTreeEdge(u, v, edge.weight())),
                        continue
                    );

                    if !finished.is_visited(&v) {
                        try_control!(
                            visitor(BfsEvent::GrayTargetEdge(u, v, edge.weight())),
                            continue
                        );
                    } else {
                        try_control!(
                            visitor(BfsEvent::BlackTargetEdge(u, v, edge.weight())),
                            continue
                        );
                    }
                }
            }

            let first_finish = finished.visit(u);
            debug_assert!(first_finish);
            try_control!(
                visitor(BfsEvent::Finish(u)),
                panic!("Pruning on the `BfsEvent::Finish` is not supported!")
            );
        }
    });

    C::continuing()
}