1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.

use hashbrown::HashSet;
use std::collections::VecDeque;
use std::hash::Hash;

use petgraph::visit::{GraphProp, IntoNeighborsDirected, IntoNodeIdentifiers, VisitMap, Visitable};
use petgraph::{Incoming, Outgoing};

/// Given an graph, a node in the graph, and a visit_map,
/// return the set of nodes connected to the given node
/// using breadth first search and treating all edges
/// as undirected.
///
/// Arguments:
///
/// * `graph` - The graph object to run the algorithm on
/// * `node` - The node index to find the connected nodes for
/// * `discovered()` - The visit map for the graph
///
/// # Example
/// ```rust
/// use std::iter::FromIterator;
/// use hashbrown::HashSet;
/// use petgraph::graph::Graph;
/// use petgraph::graph::node_index as ndx;
/// use petgraph::visit::Visitable;
/// use petgraph::Directed;
/// use rustworkx_core::connectivity::bfs_undirected;
///
/// let graph = Graph::<(), (), Directed>::from_edges(&[
///     (0, 1),
///     (1, 2),
///     (2, 3),
///     (3, 0),
///     (4, 5),
///     (5, 6),
///     (6, 7),
///     (7, 4),
/// ]);
/// let node_idx = ndx(3);
/// let component = bfs_undirected(&graph, node_idx, &mut graph.visit_map());
/// let expected = HashSet::from_iter([ndx(0), ndx(1), ndx(3), ndx(2)]);
/// assert_eq!(expected, component);
/// ```
pub fn bfs_undirected<G>(graph: G, start: G::NodeId, discovered: &mut G::Map) -> HashSet<G::NodeId>
where
    G: GraphProp + IntoNeighborsDirected + Visitable,
    G::NodeId: Eq + Hash,
{
    let mut component = HashSet::new();
    component.insert(start);
    let mut stack = VecDeque::new();
    stack.push_front(start);

    while let Some(node) = stack.pop_front() {
        for succ in graph
            .neighbors_directed(node, Outgoing)
            .chain(graph.neighbors_directed(node, Incoming))
        {
            if discovered.visit(succ) {
                stack.push_back(succ);
                component.insert(succ);
            }
        }
    }

    component
}

/// Given a graph, return a list of sets of all the
/// connected components.
///
/// Arguments:
///
/// * `graph` - The graph object to run the algorithm on
///
/// # Example
/// ```rust
/// use std::iter::FromIterator;
/// use hashbrown::HashSet;
/// use petgraph::graph::Graph;
/// use petgraph::graph::NodeIndex;
/// use petgraph::{Undirected, Directed};
/// use petgraph::graph::node_index as ndx;
/// use rustworkx_core::connectivity::connected_components;
///
/// let graph = Graph::<(), (), Undirected>::from_edges(&[
///     (0, 1),
///     (1, 2),
///     (2, 3),
///     (3, 0),
///     (4, 5),
///     (5, 6),
///     (6, 7),
///     (7, 4),
/// ]);
/// let components = connected_components(&graph);
/// let exp1 = HashSet::from_iter([ndx(0), ndx(1), ndx(3), ndx(2)]);
/// let exp2 = HashSet::from_iter([ndx(7), ndx(5), ndx(4), ndx(6)]);
/// let expected = vec![exp1, exp2];
/// assert_eq!(expected, components);
/// ```
pub fn connected_components<G>(graph: G) -> Vec<HashSet<G::NodeId>>
where
    G: GraphProp + IntoNeighborsDirected + Visitable + IntoNodeIdentifiers,
    G::NodeId: Eq + Hash,
{
    let mut conn_components = Vec::new();
    let mut discovered = graph.visit_map();

    for start in graph.node_identifiers() {
        if !discovered.visit(start) {
            continue;
        }

        let component = bfs_undirected(graph, start, &mut discovered);
        conn_components.push(component)
    }

    conn_components
}

/// Given a graph, return the number of connected components of the graph.
///
/// Arguments:
///
/// * `graph` - The graph object to run the algorithm on
///
/// # Example
/// ```rust
/// use rustworkx_core::petgraph::{Graph, Undirected};
/// use rustworkx_core::connectivity::number_connected_components;
///
/// let graph = Graph::<(), (), Undirected>::from_edges([(0, 1), (1, 2), (3, 4)]);
/// assert_eq!(number_connected_components(&graph), 2);
/// ```
pub fn number_connected_components<G>(graph: G) -> usize
where
    G: GraphProp + IntoNeighborsDirected + Visitable + IntoNodeIdentifiers,
    G::NodeId: Eq + Hash,
{
    let mut num_components = 0;

    let mut discovered = graph.visit_map();
    for start in graph.node_identifiers() {
        if !discovered.visit(start) {
            continue;
        }

        num_components += 1;
        bfs_undirected(graph, start, &mut discovered);
    }

    num_components
}

#[cfg(test)]
mod test_conn_components {
    use hashbrown::HashSet;
    use petgraph::graph::node_index as ndx;
    use petgraph::graph::{Graph, NodeIndex};
    use petgraph::visit::Visitable;
    use petgraph::{Directed, Undirected};
    use std::iter::FromIterator;

    use crate::connectivity::{bfs_undirected, connected_components, number_connected_components};

    #[test]
    fn test_number_connected() {
        let graph = Graph::<(), (), Undirected>::from_edges([(0, 1), (1, 2), (3, 4)]);
        assert_eq!(number_connected_components(&graph), 2);
    }

    #[test]
    fn test_number_node_holes() {
        let mut graph = Graph::<(), (), Directed>::from_edges([(0, 1), (1, 2)]);
        graph.remove_node(NodeIndex::new(1));
        assert_eq!(number_connected_components(&graph), 2);
    }

    #[test]
    fn test_number_connected_directed() {
        let graph = Graph::<(), (), Directed>::from_edges([(3, 2), (2, 1), (1, 0)]);
        assert_eq!(number_connected_components(&graph), 1);
    }

    #[test]
    fn test_connected_components() {
        let graph = Graph::<(), (), Undirected>::from_edges(&[
            (0, 1),
            (1, 2),
            (2, 3),
            (3, 0),
            (4, 5),
            (5, 6),
            (6, 7),
            (7, 4),
        ]);
        let components = connected_components(&graph);
        let exp1 = HashSet::from_iter([ndx(0), ndx(1), ndx(3), ndx(2)]);
        let exp2 = HashSet::from_iter([ndx(7), ndx(5), ndx(4), ndx(6)]);
        let expected = vec![exp1, exp2];
        assert_eq!(expected, components);
    }

    #[test]
    fn test_bfs_undirected() {
        let graph = Graph::<(), (), Directed>::from_edges(&[
            (0, 1),
            (1, 2),
            (2, 3),
            (3, 0),
            (4, 5),
            (5, 6),
            (6, 7),
            (7, 4),
        ]);
        let node_idx = NodeIndex::new(3);
        let component = bfs_undirected(&graph, node_idx, &mut graph.visit_map());
        let expected = HashSet::from_iter([ndx(0), ndx(1), ndx(3), ndx(2)]);
        assert_eq!(expected, component);
    }
}