rustorch/execution/
runtime.rs

1//! Runtime execution engine with JIT compilation and optimization
2//! JITコンパイルと最適化を持つ実行時実行エンジン
3
4use super::dynamic::{DynamicExecutionContext, DynamicOp, ExecutionPlan, JitCompiler};
5use crate::error::{RusTorchError, RusTorchResult};
6use crate::tensor::Tensor;
7use num_traits::Float;
8use std::collections::HashMap;
9use std::sync::{Arc, RwLock};
10use std::time::Instant;
11
12/// Runtime execution engine for dynamic graph execution
13/// 動的グラフ実行のための実行時実行エンジン
14pub struct RuntimeEngine<T: Float + Send + Sync + 'static> {
15    /// Dynamic execution context
16    pub context: DynamicExecutionContext<T>,
17    /// JIT compiler
18    jit_compiler: JitCompiler<T>,
19    /// Execution cache for common patterns
20    pub execution_cache: HashMap<String, CachedExecution<T>>,
21    /// Runtime configuration
22    pub config: RuntimeConfig,
23    /// Performance metrics
24    metrics: Arc<RwLock<RuntimeMetrics>>,
25}
26
27/// Runtime configuration
28/// 実行時設定
29#[derive(Debug, Clone)]
30pub struct RuntimeConfig {
31    /// Enable JIT compilation
32    pub enable_jit: bool,
33    /// Enable operation fusion
34    pub enable_fusion: bool,
35    /// Enable memory optimization
36    pub enable_memory_opt: bool,
37    /// Enable parallel execution
38    pub enable_parallel: bool,
39    /// Maximum cache size
40    pub max_cache_size: usize,
41    /// JIT compilation threshold (operations)
42    pub jit_threshold: usize,
43}
44
45impl Default for RuntimeConfig {
46    fn default() -> Self {
47        RuntimeConfig {
48            enable_jit: true,
49            enable_fusion: true,
50            enable_memory_opt: true,
51            enable_parallel: true,
52            max_cache_size: 1000,
53            jit_threshold: 5,
54        }
55    }
56}
57
58/// Cached execution for pattern reuse
59/// パターン再利用のためのキャッシュされた実行
60#[derive(Clone)]
61pub struct CachedExecution<T: Float + Send + Sync + 'static> {
62    /// Execution plan
63    pub plan: ExecutionPlan<T>,
64    /// Expected input shapes
65    pub input_shapes: Vec<Vec<usize>>,
66    /// Output shape
67    pub output_shape: Vec<usize>,
68    /// Hit count
69    pub hit_count: usize,
70    /// Last used timestamp
71    pub last_used: Instant,
72}
73
74/// Runtime performance metrics
75/// 実行時パフォーマンスメトリクス
76#[derive(Debug, Default, Clone)]
77pub struct RuntimeMetrics {
78    /// Total executions
79    pub total_executions: usize,
80    /// Cache hit rate
81    pub cache_hit_rate: f64,
82    /// Average execution time
83    pub avg_execution_time: std::time::Duration,
84    /// JIT compilation statistics
85    pub jit_stats: JitCompilationMetrics,
86    /// Memory statistics
87    pub memory_stats: MemoryMetrics,
88    /// Parallel execution statistics
89    pub parallel_stats: ParallelExecutionMetrics,
90}
91
92/// JIT compilation metrics
93/// JITコンパイルメトリクス
94#[derive(Debug, Default, Clone)]
95pub struct JitCompilationMetrics {
96    /// Total compilations
97    pub total_compilations: usize,
98    /// Successful compilations
99    pub successful_compilations: usize,
100    /// Average compilation time
101    pub avg_compilation_time: std::time::Duration,
102    /// Average speedup from JIT
103    pub avg_speedup: f64,
104}
105
106/// Memory usage metrics
107/// メモリ使用量メトリクス
108#[derive(Debug, Default, Clone)]
109pub struct MemoryMetrics {
110    /// Peak memory usage
111    pub peak_memory: usize,
112    /// Current memory usage
113    pub current_memory: usize,
114    /// Memory efficiency (reuse rate)
115    pub memory_efficiency: f64,
116    /// Allocation count
117    pub allocations: usize,
118    /// Deallocation count
119    pub deallocations: usize,
120}
121
122/// Parallel execution metrics
123/// 並列実行メトリクス
124#[derive(Debug, Default, Clone)]
125pub struct ParallelExecutionMetrics {
126    /// Parallel execution opportunities
127    pub parallel_opportunities: usize,
128    /// Parallel executions performed
129    pub parallel_executions: usize,
130    /// Average parallelism factor
131    pub avg_parallelism: f64,
132    /// Parallel efficiency
133    pub parallel_efficiency: f64,
134}
135
136impl<T: Float + Send + Sync + 'static + ndarray::ScalarOperand + num_traits::FromPrimitive>
137    RuntimeEngine<T>
138{
139    /// Create new runtime engine
140    pub fn new(config: RuntimeConfig) -> Self {
141        RuntimeEngine {
142            context: DynamicExecutionContext::new(),
143            jit_compiler: JitCompiler::new(),
144            execution_cache: HashMap::new(),
145            config,
146            metrics: Arc::new(RwLock::new(RuntimeMetrics::default())),
147        }
148    }
149
150    /// Execute a computation graph with runtime optimization
151    pub fn execute_graph(
152        &mut self,
153        graph_builder: impl FnOnce(&mut GraphBuilder<T>) -> RusTorchResult<usize>,
154    ) -> RusTorchResult<Tensor<T>> {
155        let start_time = Instant::now();
156
157        // Build graph using builder pattern
158        let mut builder = GraphBuilder::new(&mut self.context);
159        let output_node_id = graph_builder(&mut builder)?;
160
161        // Check cache for similar execution pattern
162        let pattern_key = self.generate_pattern_key(output_node_id)?;
163
164        if self.execution_cache.contains_key(&pattern_key) {
165            // Update cache statistics
166            if let Some(cached) = self.execution_cache.get_mut(&pattern_key) {
167                cached.hit_count += 1;
168                cached.last_used = Instant::now();
169            }
170
171            // Update metrics
172            let mut metrics = self.metrics.write().unwrap();
173            metrics.cache_hit_rate = (metrics.cache_hit_rate * metrics.total_executions as f64
174                + 1.0)
175                / (metrics.total_executions as f64 + 1.0);
176        }
177
178        // Create execution plan
179        let execution_plan = self.context.create_execution_plan(output_node_id)?;
180
181        // Apply optimizations based on configuration
182        if self.config.enable_jit && execution_plan.operations.len() >= self.config.jit_threshold {
183            self.apply_jit_compilation(&execution_plan)?;
184        }
185
186        // Execute
187        let result = self.context.execute(output_node_id)?;
188
189        // Update metrics
190        let mut metrics = self.metrics.write().unwrap();
191        metrics.total_executions += 1;
192        metrics.memory_stats.allocations += 1;
193
194        // Update peak memory (estimate based on tensor size)
195        let estimated_memory = result.data.len() * std::mem::size_of::<T>();
196        if estimated_memory > metrics.memory_stats.peak_memory {
197            metrics.memory_stats.peak_memory = estimated_memory;
198        }
199
200        // Calculate memory efficiency (simple heuristic)
201        metrics.memory_stats.memory_efficiency =
202            metrics.memory_stats.allocations as f64 / (metrics.total_executions as f64 + 1.0);
203
204        metrics.avg_execution_time = (metrics.avg_execution_time
205            * (metrics.total_executions - 1) as u32
206            + start_time.elapsed())
207            / metrics.total_executions as u32;
208
209        Ok(result)
210    }
211
212    /// Generate pattern key for caching
213    fn generate_pattern_key(&self, output_node_id: usize) -> RusTorchResult<String> {
214        // Create a simplified pattern representation
215        let mut pattern_parts = Vec::new();
216        self.collect_pattern_recursive(
217            output_node_id,
218            &mut pattern_parts,
219            &mut std::collections::HashSet::new(),
220        )?;
221        Ok(pattern_parts.join("->"))
222    }
223
224    /// Recursively collect pattern for caching
225    fn collect_pattern_recursive(
226        &self,
227        node_id: usize,
228        pattern: &mut Vec<String>,
229        visited: &mut std::collections::HashSet<usize>,
230    ) -> RusTorchResult<()> {
231        if visited.contains(&node_id) {
232            return Ok(());
233        }
234        visited.insert(node_id);
235
236        if let Some(node) = self.context.get_dynamic_node(&node_id) {
237            // Add operation to pattern
238            pattern.push(format!("{:?}", node.op));
239
240            // Process inputs
241            for input_node in &node.inputs {
242                self.collect_pattern_recursive(input_node.id, pattern, visited)?;
243            }
244        }
245
246        Ok(())
247    }
248
249    /// Apply JIT compilation to hot paths
250    fn apply_jit_compilation(&mut self, plan: &ExecutionPlan<T>) -> RusTorchResult<()> {
251        // Extract operation sequences for JIT compilation
252        let ops: Vec<DynamicOp> = plan.operations.iter().map(|op| op.op.clone()).collect();
253
254        if ops.len() >= self.config.jit_threshold {
255            let start_time = Instant::now();
256            let _compiled_fn = self.jit_compiler.compile_operations(&ops)?;
257
258            // Update JIT metrics
259            let mut metrics = self.metrics.write().unwrap();
260            metrics.jit_stats.total_compilations += 1;
261            metrics.jit_stats.avg_compilation_time = (metrics.jit_stats.avg_compilation_time
262                * (metrics.jit_stats.total_compilations - 1) as u32
263                + start_time.elapsed())
264                / metrics.jit_stats.total_compilations as u32;
265        }
266
267        Ok(())
268    }
269
270    /// Get runtime metrics
271    pub fn get_metrics(&self) -> RuntimeMetrics {
272        self.metrics.read().unwrap().clone()
273    }
274
275    /// Reset all metrics
276    pub fn reset_metrics(&mut self) {
277        *self.metrics.write().unwrap() = RuntimeMetrics::default();
278    }
279
280    /// Warm up the engine with common operations
281    pub fn warmup(&mut self) -> RusTorchResult<()> {
282        // Pre-compile common operation patterns
283        let common_patterns = vec![
284            vec![
285                DynamicOp::Linear {
286                    in_features: 784,
287                    out_features: 128,
288                },
289                DynamicOp::ReLU,
290            ],
291            vec![
292                DynamicOp::Conv2d {
293                    kernel_size: (3, 3),
294                    stride: (1, 1),
295                    padding: (1, 1),
296                },
297                DynamicOp::ReLU,
298            ],
299            vec![DynamicOp::Add, DynamicOp::ReLU],
300            vec![DynamicOp::MatMul, DynamicOp::Sigmoid],
301        ];
302
303        for pattern in common_patterns {
304            self.jit_compiler.compile_operations(&pattern)?;
305
306            // Update JIT metrics
307            let mut metrics = self.metrics.write().unwrap();
308            metrics.jit_stats.total_compilations += 1;
309            metrics.jit_stats.successful_compilations += 1;
310        }
311
312        Ok(())
313    }
314
315    /// Clean up old cache entries
316    pub fn cleanup_cache(&mut self) {
317        let now = Instant::now();
318        let max_age = std::time::Duration::from_secs(3600); // 1 hour
319
320        self.execution_cache
321            .retain(|_, cached| now.duration_since(cached.last_used) < max_age);
322
323        // Limit cache size
324        if self.execution_cache.len() > self.config.max_cache_size {
325            // Remove least recently used entries
326            let entries: Vec<_> = self
327                .execution_cache
328                .iter()
329                .map(|(k, v)| (k.clone(), v.last_used))
330                .collect();
331            let mut sorted_entries = entries;
332            sorted_entries.sort_by_key(|(_, last_used)| *last_used);
333
334            let to_remove = sorted_entries.len() - self.config.max_cache_size;
335            for (key, _) in sorted_entries.into_iter().take(to_remove) {
336                self.execution_cache.remove(&key);
337            }
338        }
339    }
340
341    /// Profile execution and suggest optimizations
342    pub fn profile_execution(&mut self, iterations: usize) -> RusTorchResult<ProfileResult> {
343        let mut profile_result = ProfileResult::new();
344
345        for i in 0..iterations {
346            let start_time = Instant::now();
347
348            // Create a sample graph for profiling
349            let result = self.execute_graph(|builder| {
350                let input1 = builder.add_input(Tensor::ones(&[32, 784]))?;
351                let weight1 = builder.add_parameter(Tensor::ones(&[128, 784]))?;
352                let bias1 = builder.add_parameter(Tensor::ones(&[128]))?;
353
354                let linear1 = builder.add_operation(
355                    DynamicOp::Linear {
356                        in_features: 784,
357                        out_features: 128,
358                    },
359                    vec![input1, weight1, bias1],
360                )?;
361
362                let relu1 = builder.add_operation(DynamicOp::ReLU, vec![linear1])?;
363
364                let weight2 = builder.add_parameter(Tensor::ones(&[10, 128]))?;
365                let bias2 = builder.add_parameter(Tensor::ones(&[10]))?;
366
367                let output = builder.add_operation(
368                    DynamicOp::Linear {
369                        in_features: 128,
370                        out_features: 10,
371                    },
372                    vec![relu1, weight2, bias2],
373                )?;
374
375                Ok(output)
376            })?;
377
378            let execution_time = start_time.elapsed();
379            profile_result.add_execution_time(execution_time);
380
381            if i % 100 == 0 {
382                println!(
383                    "Profile iteration {}/{}: {:?}",
384                    i + 1,
385                    iterations,
386                    execution_time
387                );
388            }
389        }
390
391        // Analyze metrics and generate recommendations
392        profile_result.analyze_performance(&self.get_metrics());
393
394        Ok(profile_result)
395    }
396}
397
398/// Graph builder for fluent API
399/// 流暢なAPIのためのグラフビルダー
400pub struct GraphBuilder<'a, T: Float + Send + Sync + 'static> {
401    context: &'a mut DynamicExecutionContext<T>,
402}
403
404impl<'a, T: Float + Send + Sync + 'static + ndarray::ScalarOperand + num_traits::FromPrimitive>
405    GraphBuilder<'a, T>
406{
407    /// Create new graph builder
408    pub fn new(context: &'a mut DynamicExecutionContext<T>) -> Self {
409        GraphBuilder { context }
410    }
411
412    /// Add input tensor
413    pub fn add_input(&mut self, tensor: Tensor<T>) -> RusTorchResult<usize> {
414        self.context.add_leaf(tensor)
415    }
416
417    /// Add parameter tensor
418    pub fn add_parameter(&mut self, tensor: Tensor<T>) -> RusTorchResult<usize> {
419        self.context.add_leaf(tensor)
420    }
421
422    /// Add operation
423    pub fn add_operation(&mut self, op: DynamicOp, inputs: Vec<usize>) -> RusTorchResult<usize> {
424        self.context.add_operation(op, inputs)
425    }
426
427    /// Add linear layer
428    pub fn linear(
429        &mut self,
430        input: usize,
431        weight: usize,
432        bias: Option<usize>,
433    ) -> RusTorchResult<usize> {
434        let inputs = if let Some(b) = bias {
435            vec![input, weight, b]
436        } else {
437            vec![input, weight]
438        };
439
440        // Infer dimensions from weight tensor
441        if let Some(weight_node) = self.context.get_dynamic_node(&weight) {
442            if let Some(weight_tensor) = weight_node.get_cached_output() {
443                let shape = weight_tensor.shape();
444                if shape.len() == 2 && shape[0] > 0 && shape[1] > 0 {
445                    return self.add_operation(
446                        DynamicOp::Linear {
447                            in_features: shape[1],
448                            out_features: shape[0],
449                        },
450                        inputs,
451                    );
452                }
453            }
454        }
455
456        // Fallback to default sizes
457        self.add_operation(
458            DynamicOp::Linear {
459                in_features: 784,
460                out_features: 128,
461            },
462            inputs,
463        )
464    }
465
466    /// Add conv2d layer
467    pub fn conv2d(
468        &mut self,
469        input: usize,
470        weight: usize,
471        kernel_size: (usize, usize),
472        stride: (usize, usize),
473        padding: (usize, usize),
474    ) -> RusTorchResult<usize> {
475        self.add_operation(
476            DynamicOp::Conv2d {
477                kernel_size,
478                stride,
479                padding,
480            },
481            vec![input, weight],
482        )
483    }
484
485    /// Add ReLU activation
486    pub fn relu(&mut self, input: usize) -> RusTorchResult<usize> {
487        self.add_operation(DynamicOp::ReLU, vec![input])
488    }
489
490    /// Add sigmoid activation  
491    pub fn sigmoid(&mut self, input: usize) -> RusTorchResult<usize> {
492        self.add_operation(DynamicOp::Sigmoid, vec![input])
493    }
494
495    /// Add element-wise addition
496    pub fn add(&mut self, input1: usize, input2: usize) -> RusTorchResult<usize> {
497        // Validate input shapes for compatibility
498        if let (Some(node1), Some(node2)) = (
499            self.context.get_dynamic_node(&input1),
500            self.context.get_dynamic_node(&input2),
501        ) {
502            if let (Some(tensor1), Some(tensor2)) =
503                (node1.get_cached_output(), node2.get_cached_output())
504            {
505                let shape1 = tensor1.shape();
506                let shape2 = tensor2.shape();
507
508                // Check for exact shape match or broadcasting compatibility
509                if shape1 != shape2 && !Self::can_broadcast(shape1, shape2) {
510                    return Err(RusTorchError::shape_mismatch(shape1, shape2));
511                }
512            }
513        }
514
515        self.add_operation(DynamicOp::Add, vec![input1, input2])
516    }
517
518    /// Check if two shapes can be broadcast together
519    fn can_broadcast(shape1: &[usize], shape2: &[usize]) -> bool {
520        let (s1, s2) = if shape1.len() > shape2.len() {
521            (shape1, shape2)
522        } else {
523            (shape2, shape1)
524        };
525
526        for (i, (&dim2, &dim1)) in s2.iter().rev().zip(s1.iter().rev()).enumerate() {
527            if dim2 != 1 && dim1 != 1 && dim2 != dim1 {
528                return false;
529            }
530        }
531        true
532    }
533
534    /// Add matrix multiplication
535    pub fn matmul(&mut self, input1: usize, input2: usize) -> RusTorchResult<usize> {
536        self.add_operation(DynamicOp::MatMul, vec![input1, input2])
537    }
538
539    /// Add reshape operation
540    pub fn reshape(&mut self, input: usize, shape: Vec<usize>) -> RusTorchResult<usize> {
541        self.add_operation(DynamicOp::Reshape { shape }, vec![input])
542    }
543}
544
545/// Profiling result with performance analysis
546/// パフォーマンス分析付きプロファイル結果
547pub struct ProfileResult {
548    /// Execution times
549    execution_times: Vec<std::time::Duration>,
550    /// Performance recommendations
551    recommendations: Vec<String>,
552    /// Bottleneck analysis
553    bottlenecks: Vec<BottleneckInfo>,
554}
555
556/// Bottleneck information
557/// ボトルネック情報
558#[derive(Debug)]
559pub struct BottleneckInfo {
560    /// Operation type causing bottleneck
561    pub operation: String,
562    /// Percentage of total time
563    pub time_percentage: f64,
564    /// Recommended optimization
565    pub recommendation: String,
566}
567
568impl ProfileResult {
569    /// Create new profile result
570    pub fn new() -> Self {
571        ProfileResult {
572            execution_times: Vec::new(),
573            recommendations: Vec::new(),
574            bottlenecks: Vec::new(),
575        }
576    }
577
578    /// Add execution time measurement
579    pub fn add_execution_time(&mut self, time: std::time::Duration) {
580        self.execution_times.push(time);
581    }
582
583    /// Analyze performance and generate recommendations
584    pub fn analyze_performance(&mut self, metrics: &RuntimeMetrics) {
585        // Calculate statistics
586        let avg_time = if !self.execution_times.is_empty() {
587            self.execution_times.iter().sum::<std::time::Duration>()
588                / self.execution_times.len() as u32
589        } else {
590            std::time::Duration::default()
591        };
592        let min_time = self
593            .execution_times
594            .iter()
595            .min()
596            .copied()
597            .unwrap_or_default();
598        let max_time = self
599            .execution_times
600            .iter()
601            .max()
602            .copied()
603            .unwrap_or_default();
604
605        // Generate recommendations based on analysis
606        if metrics.cache_hit_rate < 0.5 {
607            self.recommendations.push(
608                "Consider increasing cache size or improving cache key generation".to_string(),
609            );
610        }
611
612        if metrics.jit_stats.avg_speedup < 2.0 {
613            self.recommendations
614                .push("JIT compilation showing limited benefit, consider disabling".to_string());
615        }
616
617        if metrics.memory_stats.memory_efficiency < 0.7 {
618            self.recommendations
619                .push("Memory efficiency low, consider memory pooling optimization".to_string());
620        }
621
622        if metrics.parallel_stats.parallel_efficiency < 0.6 {
623            self.recommendations.push(
624                "Parallel execution efficiency low, review operation dependencies".to_string(),
625            );
626        }
627
628        // Identify bottlenecks
629        if max_time > avg_time * 2 {
630            self.bottlenecks.push(BottleneckInfo {
631                operation: "Variable execution time".to_string(),
632                time_percentage: ((max_time.as_nanos() - min_time.as_nanos()) as f64
633                    / max_time.as_nanos() as f64)
634                    * 100.0,
635                recommendation: "Investigate inconsistent operation performance".to_string(),
636            });
637        }
638    }
639
640    /// Get performance summary
641    pub fn summary(&self) -> String {
642        let avg_time = if !self.execution_times.is_empty() {
643            self.execution_times.iter().sum::<std::time::Duration>()
644                / self.execution_times.len() as u32
645        } else {
646            std::time::Duration::default()
647        };
648
649        format!(
650            "Performance Profile Summary:\n\
651             - Executions: {}\n\
652             - Average time: {:?}\n\
653             - Recommendations: {}\n\
654             - Bottlenecks: {}",
655            self.execution_times.len(),
656            avg_time,
657            self.recommendations.len(),
658            self.bottlenecks.len()
659        )
660    }
661}
662
663#[cfg(test)]
664mod tests {
665    use super::*;
666
667    #[test]
668    fn test_runtime_engine_creation() {
669        let config = RuntimeConfig::default();
670        let _engine = RuntimeEngine::<f32>::new(config);
671    }
672
673    #[test]
674    fn test_graph_builder() {
675        let config = RuntimeConfig::default();
676        let mut engine = RuntimeEngine::<f32>::new(config);
677
678        let result = engine.execute_graph(|builder| {
679            let input = builder.add_input(Tensor::ones(&[2, 3]))?;
680            let weight = builder.add_parameter(Tensor::ones(&[4, 3]))?;
681            let output = builder.linear(input, weight, None)?;
682            Ok(output)
683        });
684
685        match result {
686            Ok(_) => {}
687            Err(e) => panic!("Test failed with error: {:?}", e),
688        }
689    }
690
691    #[test]
692    fn test_warmup() {
693        let config = RuntimeConfig::default();
694        let mut engine = RuntimeEngine::<f32>::new(config);
695
696        engine.warmup().unwrap();
697
698        // Should have compiled common patterns
699        assert!(engine.jit_compiler.get_stats().compilations > 0);
700    }
701
702    #[test]
703    fn test_cache_cleanup() {
704        let mut config = RuntimeConfig::default();
705        config.max_cache_size = 2;
706        let mut engine = RuntimeEngine::<f32>::new(config);
707
708        // Fill cache beyond limit
709        for i in 0..5 {
710            let _result = engine
711                .execute_graph(|builder| {
712                    let input = builder.add_input(Tensor::ones(&[i + 1, 3]))?;
713                    let output = builder.relu(input)?;
714                    Ok(output)
715                })
716                .unwrap();
717        }
718
719        engine.cleanup_cache();
720        assert!(engine.execution_cache.len() <= 2);
721    }
722
723    #[test]
724    fn test_profiling() {
725        let config = RuntimeConfig::default();
726        let mut engine = RuntimeEngine::<f32>::new(config);
727
728        let profile_result = engine.profile_execution(3).unwrap();
729        let summary = profile_result.summary();
730
731        assert!(summary.contains("Executions: 3"));
732    }
733}