1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
use itertools::multizip;
use na::{convert, Matrix1xX, Matrix3x1, Matrix3xX, MatrixSlice3x1, RealField};
pub fn magnitudes<T>(vectors: &Matrix3xX<T>) -> Matrix1xX<T>
where
T: RealField,
{
let number_vectors = vectors.ncols();
let mut magnitudes = Matrix1xX::<T>::zeros(number_vectors);
for (res, vector) in multizip((magnitudes.iter_mut(), vectors.column_iter())) {
*res = magnitude_slice(vector);
}
magnitudes
}
pub fn magnitude<T>(vector: &Matrix3x1<T>) -> T
where
T: RealField,
{
magnitude_slice(vector.column(0))
}
pub fn magnitude_slice<T>(vector: MatrixSlice3x1<T>) -> T
where
T: RealField,
{
(vector).norm()
}
pub fn directions<T>(vectors: &Matrix3xX<T>) -> Matrix3xX<T>
where
T: RealField,
{
let number_vectors = vectors.ncols();
let mut directions = Matrix3xX::zeros(number_vectors);
for (mut direction, vector) in multizip((directions.column_iter_mut(), vectors.column_iter())) {
direction.copy_from(&direction_slice(vector));
}
directions
}
pub fn direction<T>(vector: &Matrix3x1<T>) -> Matrix3x1<T>
where
T: RealField,
{
direction_slice(vector.column(0))
}
pub fn direction_slice<T>(vector: MatrixSlice3x1<T>) -> Matrix3x1<T>
where
T: RealField,
{
(vector).normalize()
}
pub fn cart_to_sph<T>(matrix: &Matrix3xX<T>) -> Matrix3xX<T>
where
T: RealField,
{
let mut sphericals = Matrix3xX::zeros(matrix.ncols());
for (mut spherical, cartesian) in multizip((sphericals.column_iter_mut(), matrix.column_iter()))
{
if cartesian.norm() == convert(0.) {
spherical.copy_from(&Matrix3x1::<T>::zeros());
} else {
spherical.copy_from_slice(&[
cartesian[1].atan2(cartesian[0]),
(cartesian[2] / cartesian.norm()).asin(),
cartesian.norm(),
]);
}
}
sphericals
}