rustler/types/erlang_option.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
use super::atom;
use crate::{Decoder, Encoder, Env, Error, NifResult, Term};
use std::ops::{Deref, DerefMut};
/// A wrapper type for [`Option<T>`][option] to provide Erlang style encoding. It
/// uses `undefined` atom instead of `nil` when the enclosing value is `None`.
///
/// Useful for interacting with Erlang libraries as `undefined` is commonly used in
/// Erlang to represent the absence of a value.
///
/// [option]: https://doc.rust-lang.org/stable/core/option/enum.Option.html
///
/// # Examples
///
/// `ErlOption<T>` provides methods to convert to/from `Option<T>`.
///
/// ```rust
/// use rustler::ErlOption;
///
/// // Create new `ErlOption<i32>` values via convenient functions.
/// let _ = ErlOption::some(1); // Wraps `Some(1)`.
/// let _ = ErlOption::<i32>::none();
///
/// // Convert Option<i32> values to ErlOption<i32> values.
/// let _ = ErlOption::from(Some(2));
/// let _: ErlOption<_> = Some(3).into();
/// let _: ErlOption<i32> = None.into();
///
/// // Get a reference of enclosing Option<T> from an ErlOption<T>.
/// let _: &Option<i32> = ErlOption::some(4).as_ref();
///
/// // Get a mutable reference of enclosing Option<T> from an ErlOption<T>.
/// let _: &mut Option<i32> = ErlOption::some(5).as_mut();
///
/// // Convert an ErlOption<i32> value to an Option<i32> value.
/// let _: Option<i32> = ErlOption::some(6).into();
///
/// // Compare ErlOption<T> with Option<T>.
/// assert_eq!(ErlOption::some(7), Some(7));
/// assert!(ErlOption::some(8) > Some(7));
///
/// // Call Option<T>'s methods on an ErlOption<T> via Deref and DerefMut.
/// assert!(ErlOption::some(9).is_some());
/// assert_eq!(ErlOption::some(10).unwrap(), 10);
/// assert_eq!(ErlOption::some(12).map(|v| v + 1), ErlOption::some(13));
/// ```
///
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ErlOption<T>(Option<T>);
impl<T> ErlOption<T> {
/// A convenience function to create an `ErlOption<T>` from a `Some(T)` value.
pub fn some(v: T) -> Self {
Some(v).into()
}
/// A convenience function to create an `ErlOption<T>` enclosing the `None`
/// value.
pub fn none() -> Self {
Default::default()
}
}
// NOTE: Manually implement the Default instead of deriving it. This is because
// deriving requires `T` to be `Default` as well, but we do not need that.
impl<T> Default for ErlOption<T> {
fn default() -> Self {
Self(None)
}
}
impl<T> From<Option<T>> for ErlOption<T> {
fn from(v: Option<T>) -> Self {
ErlOption(v)
}
}
impl<T> From<ErlOption<T>> for Option<T> {
fn from(v: ErlOption<T>) -> Self {
v.0
}
}
impl<T> AsMut<Option<T>> for ErlOption<T> {
fn as_mut(&mut self) -> &mut Option<T> {
&mut self.0
}
}
impl<T> AsRef<Option<T>> for ErlOption<T> {
fn as_ref(&self) -> &Option<T> {
&self.0
}
}
impl<T> Deref for ErlOption<T> {
type Target = Option<T>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<T> DerefMut for ErlOption<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl<T> PartialEq<Option<T>> for ErlOption<T>
where
T: PartialEq,
{
fn eq(&self, other: &Option<T>) -> bool {
&self.0 == other
}
}
impl<T> PartialEq<ErlOption<T>> for Option<T>
where
T: PartialEq,
{
fn eq(&self, other: &ErlOption<T>) -> bool {
self == &other.0
}
}
impl<T> PartialOrd<Option<T>> for ErlOption<T>
where
T: PartialOrd,
{
fn partial_cmp(&self, other: &Option<T>) -> Option<std::cmp::Ordering> {
self.0.partial_cmp(other)
}
}
impl<T> PartialOrd<ErlOption<T>> for Option<T>
where
T: PartialOrd,
{
fn partial_cmp(&self, other: &ErlOption<T>) -> Option<std::cmp::Ordering> {
self.partial_cmp(&other.0)
}
}
impl<T> Encoder for ErlOption<T>
where
T: Encoder,
{
fn encode<'c>(&self, env: Env<'c>) -> Term<'c> {
match self.0 {
Some(ref value) => value.encode(env),
None => atom::undefined().encode(env),
}
}
}
impl<'a, T> Decoder<'a> for ErlOption<T>
where
T: Decoder<'a>,
{
fn decode(term: Term<'a>) -> NifResult<Self> {
if let Ok(term) = term.decode::<T>() {
Ok(Self(Some(term)))
} else {
let decoded_atom: atom::Atom = term.decode()?;
if decoded_atom == atom::undefined() {
Ok(Self(None))
} else {
Err(Error::BadArg)
}
}
}
}
#[cfg(test)]
mod test {
use super::ErlOption;
#[test]
fn test_creations() {
assert_eq!(ErlOption::some(1).as_ref(), &Some(1));
assert_eq!(ErlOption::<i32>::none().as_ref(), &None as &Option<i32>);
}
#[test]
fn test_conversions() {
// Convert Option<i32> values to ErlOption<i32> values.
assert_eq!(ErlOption::from(Some(2)), ErlOption::some(2));
assert_eq!(Into::<ErlOption<i32>>::into(Some(3)), ErlOption::some(3));
assert_eq!(Into::<ErlOption<i32>>::into(None), ErlOption::none());
// Convert an ErlOption<i32> value to an Option<i32> value.
assert_eq!(Into::<Option<i32>>::into(ErlOption::some(6)), Some(6));
}
#[test]
fn test_as_ref() {
assert_eq!(ErlOption::some(4).as_ref(), &Some(4));
assert_eq!(ErlOption::some(5).as_mut(), &mut Some(5));
}
#[test]
fn test_compare() {
assert_eq!(ErlOption::some(7), Some(7));
assert!(ErlOption::some(8) > Some(7));
}
#[test]
fn test_deref() {
assert!(ErlOption::some(9).is_some());
assert_eq!(ErlOption::some(10).unwrap(), 10);
assert_eq!(ErlOption::some(12).map(|v| v + 1), ErlOption::some(13));
}
}