Crate rustlearn

Source
Expand description

A machine learning crate for Rust.

§Introduction

This crate contains reasonably effective implementations of a number of common machine learing algorithms.

At the moment, rustlearn uses its own basic dense and sparse array types, but I will be happy to use something more robust once a clear winner in that space emerges.

§Features

§Matrix primitives

§Models

All the models support fitting and prediction on both dense and sparse data, and the implementations should be roughly competitive with Python sklearn implementations, both in accuracy and performance.

§Cross-validation

§Metrics

§Parallelization

A number of models support both parallel model fitting and prediction.

§Model serialization

Model serialization is supported via serde.

§Using rustlearn

Usage should be straightforward.

  • import the prelude for alll the linear algebra primitives and common traits:
use rustlearn::prelude::*;
  • import individual models and utilities from submodules:
use rustlearn::prelude::*;

use rustlearn::linear_models::sgdclassifier::Hyperparameters;
// more imports

§Examples

§Logistic regression

use rustlearn::prelude::*;
use rustlearn::datasets::iris;
use rustlearn::cross_validation::CrossValidation;
use rustlearn::linear_models::sgdclassifier::Hyperparameters;
use rustlearn::metrics::accuracy_score;


let (X, y) = iris::load_data();

let num_splits = 10;
let num_epochs = 5;

let mut accuracy = 0.0;

for (train_idx, test_idx) in CrossValidation::new(X.rows(), num_splits) {

    let X_train = X.get_rows(&train_idx);
    let y_train = y.get_rows(&train_idx);
    let X_test = X.get_rows(&test_idx);
    let y_test = y.get_rows(&test_idx);

    let mut model = Hyperparameters::new(X.cols())
                                    .learning_rate(0.5)
                                    .l2_penalty(0.0)
                                    .l1_penalty(0.0)
                                    .one_vs_rest();

    for _ in 0..num_epochs {
        model.fit(&X_train, &y_train).unwrap();
    }

    let prediction = model.predict(&X_test).unwrap();
    accuracy += accuracy_score(&y_test, &prediction);
}

accuracy /= num_splits as f32;

§Random forest

use rustlearn::prelude::*;

use rustlearn::ensemble::random_forest::Hyperparameters;
use rustlearn::datasets::iris;
use rustlearn::trees::decision_tree;

let (data, target) = iris::load_data();

let mut tree_params = decision_tree::Hyperparameters::new(data.cols());
tree_params.min_samples_split(10)
    .max_features(4);

let mut model = Hyperparameters::new(tree_params, 10)
    .one_vs_rest();

model.fit(&data, &target).unwrap();

// Optionally serialize and deserialize the model

// let encoded = bincode::serialize(&model).unwrap();
// let decoded: OneVsRestWrapper<RandomForest> = bincode::deserialize(&encoded).unwrap();

let prediction = model.predict(&data).unwrap();

Modules§

array
Basic matrix-like datastructures.
cross_validation
Cross validation utilities.
datasets
Datasets and dataset loading utilities.
ensemble
Ensemble models.
factorization
Factorization models.
feature_extraction
Feature extraction utilities.
linear_models
Linear models.
metrics
Accuracy metrics.
multiclass
Utilities for mutliclass classifiers.
prelude
Basic data structures and traits used throughout rustlearn.
svm
Support vector machines.
traits
Common rustlearn traits.
trees
Decision trees.
utils
Internal utils.