Expand description
§RustKernel Statistical ML
GPU-accelerated machine learning kernels for clustering, anomaly detection, and regression.
§Kernels
§Clustering (3 kernels)
KMeans- Lloyd’s algorithm with K-Means++ initializationDBSCAN- Density-based clustering with GPU union-findHierarchicalClustering- Agglomerative clustering
§Anomaly Detection (2 kernels)
IsolationForest- Ensemble of isolation treesLocalOutlierFactor- k-NN density estimation
§Streaming Anomaly Detection (2 kernels)
StreamingIsolationForest- Online anomaly detection with sliding windowAdaptiveThreshold- Self-adjusting thresholds with drift detection
§Ensemble (1 kernel)
EnsembleVoting- Weighted majority voting
§Regression (2 kernels)
LinearRegression- OLS via normal equationsRidgeRegression- L2 regularization
§Explainability (2 kernels)
SHAPValues- Kernel SHAP for feature explanationsFeatureImportance- Permutation-based feature importance
§NLP / LLM Integration (2 kernels)
EmbeddingGeneration- Text embedding via hash-based featuresSemanticSimilarity- Multi-metric semantic similarity
§Federated Learning (1 kernel)
SecureAggregation- Privacy-preserving model aggregation
§Healthcare Analytics (2 kernels)
DrugInteractionPrediction- Multi-drug interaction predictionClinicalPathwayConformance- Treatment guideline checking
Modules§
- anomaly
- Anomaly detection kernels.
- clustering
- Clustering kernels.
- ensemble
- Ensemble method kernels.
- explainability
- Explainability kernels for model interpretation.
- federated
- Federated Learning kernels.
- healthcare
- Healthcare analytics kernels.
- messages
- Ring message types for ML kernels.
- nlp
- Natural Language Processing and LLM integration kernels.
- prelude
- Prelude for convenient imports.
- regression
- Regression kernels.
- ring_
messages - Ring message types for Statistical ML kernels.
- streaming
- Streaming anomaly detection kernels.
- types
- Common ML types and data structures.
Functions§
- register_
all - Register all ML kernels with a registry.