1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
//! This module contains all the resources needed to load and examine datasets.
//!
//! A [`Dataset`] is, in essence, a list of [`Event`]s, each of which contain all the pertinent
//! information about a single set of initial- and final-state particles, as well as an index
//! and weight within the [`Dataset`].
//!
//! This crate currently supports loading [`Dataset`]s from ROOT and Parquet files (see
//! [`Dataset::from_root`] and [`Dataset::from_parquet`]. These methods require the following
//! "branches" or "columns" to be present in the file:
//!
//! | Branch Name | Data Type | Notes |
//! |---|---|---|
//! | `Weight` | Float32 | |
//! | `E_Beam` | Float32 | |
//! | `Px_Beam` | Float32 | |
//! | `Py_Beam` | Float32 | |
//! | `Pz_Beam` | Float32 | |
//! | `E_FinalState` | \[Float32\] | \[recoil, daughter #1, daughter #2, ...\] |
//! | `Px_FinalState` | \[Float32\] | \[recoil, daughter #1, daughter #2, ...\] |
//! | `Py_FinalState` | \[Float32\] | \[recoil, daughter #1, daughter #2, ...\] |
//! | `Pz_FinalState` | \[Float32\] | \[recoil, daughter #1, daughter #2, ...\] |
//! | `EPS` | \[Float32\] | \[$`P_\gamma \cos(\Phi)`$, $`P_\gamma \sin(\Phi)`$, $`0.0`$\] for linear polarization with magnitude $`P_\gamma`$ and angle $`\Phi`$ |
//!
//! The `EPS` branch is optional and files without such a branch can be loaded under the
//! following conditions. First, if we don't care about polarization, and wish to set `EPS` =
//! `[0.0, 0.0, 0.0]`, we can do so using the methods [`ReadMethod::EPS(0.0, 0.0, 0.0)`]. If
//! a data file contains events with only one polarization, we can compute the `EPS` vector
//! ourselves and use [`ReadMethod::EPS(x, y, z)`] to load the same vector for every event.
//! Finally, to provide compatibility with the way polarization is sometimes included in
//! `AmpTools` files, we can note that the beam is often only moving along the
//! $`z`$-axis, so the $`x`$ and $`y`$ components are typically `0.0` anyway, so we can store
//! the $`x`$, $`y`$, and $`z`$ components of `EPS` in the beam's three-momentum and use the
//! [`ReadMethod::EPSInBeam`] to extract it. All of these methods are used as an input for either
//! [`Dataset::from_parquet`] or [`Dataset::from_root`].
//!
//! There are also several methods used to split up [`Dataset`]s based on their component
//! values. The [`Dataset::select`] method takes mutable access to a dataset along with a query
//! function which takes an [`Event`] and returns a [`bool`]. For each event, if the query
//! returns `true`, the event is removed from the original dataset and added to a new dataset
//! which is then returned by the `select` function. The [`Dataset::reject`] method does the
//! opposite. For example,
//!
//! ```ignore
//! let ds_original = Dataset::from_root("path.root", ReadMethod::Standard).unwrap();
//! let ds_a = ds_original.clone();
//! let ds_b = ds_original.clone();
//! let mass_gt_1_gev = |e: &Event| -> bool {
//! (e.daughter_p4s[0] + e.daughter_p4s[1]).m() > 1.0
//! };
//! let ds_a_selected = ds_a.select(mass_gt_1_gev);
//! let ds_b_rejected = ds_b.reject(mass_gt_1_gev);
//! ```
//!
//! After this, `ds_a` and `ds_b_rejected` will contain events where the four-momentum of the
//! first two daughter particles combined has a mass *less than* $`1.0`$ ``GeV``. On the other hand,
//! `ds_a_selected` and `ds_b` will have events where the opposite is true and the mass is
//! *greater than* $`1.0`$ ``GeV``. The reason for this logic is two-fold. First, we might be
//! dealing with large datasets, so we don't want to create copies of events if it can be
//! avoided. If copies are needed, they should be made explicitly with [`Dataset::clone`].
//! Otherwise, we just extract the events from the dataset. The other reason is that the syntax
//! reads in a "correct" way. We expect `let selected = data.select(condition);` to put the
//! selected data into the `selected` dataset. We can then choose if we want to hold on to the
//! rejected data.
//!
//! Since it is a common operation, there is also a method [`Dataset::split`] which will bin data
//! by a query which takes an [`Event`] and returns an [`Field`] value (rather than a [`bool`]).
//! This method also takes a `range: (Field, Field)` and a number of bins `nbins: usize`, and it
//! returns a `(Vec<Dataset>, Dataset, Dataset)`. These fields correspond to the binned datasets,
//! the underflow bin, and the overflow bin respectively, so no data should ever be "lost" by this
//! operation. There is also a convenience method, [`Dataset::split_m`], to split the dataset by
//! the mass of the summed four-momentum of any of the daughter particles, specified by their
//! index.
use std::ops::Add;
use std::{fmt::Display, fs::File, iter::repeat_with, path::Path, sync::Arc};
use itertools::{izip, Either, Itertools};
use nalgebra::Vector3;
use oxyroot::{ReaderTree, RootFile, Slice};
use parquet::record::Field as ParquetField;
use parquet::{
file::reader::{FileReader, SerializedFileReader},
record::Row,
};
use rayon::prelude::*;
use tracing::info;
use crate::{errors::RustitudeError, prelude::FourMomentum, Field};
/// The [`Event`] struct contains all the information concerning a single interaction between
/// particles in the experiment. See the individual fields for additional information.
#[derive(Debug, Default, Clone)]
pub struct Event<F: Field> {
/// The index of the event with the parent [`Dataset`].
pub index: usize,
/// The weight of the event with the parent [`Dataset`].
pub weight: F,
/// The beam [`FourMomentum`].
pub beam_p4: FourMomentum<F>,
/// The recoil (target after interaction) [`FourMomentum`].
pub recoil_p4: FourMomentum<F>,
/// [`FourMomentum`] of each other final state particle.
pub daughter_p4s: Vec<FourMomentum<F>>,
/// A vector corresponding to the polarization of the beam.
pub eps: Vector3<F>,
}
impl<F: Field> Display for Event<F> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
writeln!(f, "Index: {}", self.index)?;
writeln!(f, "Weight: {}", self.weight)?;
writeln!(f, "Beam P4: {}", self.beam_p4)?;
writeln!(f, "Recoil P4: {}", self.recoil_p4)?;
writeln!(f, "Daughters:")?;
for (i, p4) in self.daughter_p4s.iter().enumerate() {
writeln!(f, "\t{i} -> {p4}")?;
}
writeln!(
f,
"EPS: [{}, {}, {}]",
self.eps[0], self.eps[1], self.eps[2]
)?;
Ok(())
}
}
/// An enum which lists various methods used to read data into [`Event`]s.
#[derive(Copy, Clone)]
pub enum ReadMethod<F: Field> {
/// The "standard" method assumes an `EPS` column/branch to read.
Standard,
/// This variant assumes the EPS vec is stored as the beam's 3-momentum.
EPSInBeam,
/// This variant can be used to provide a custom EPS vec for all events.
EPS(F, F, F),
}
impl<F: Field> ReadMethod<F> {
/// Creates the EPS vector from a polarization magnitude and angle (in radians).
pub fn from_linear_polarization(p_gamma: F, phi: F) -> Self {
Self::EPS(p_gamma * F::fcos(phi), p_gamma * F::fsin(phi), F::ZERO)
}
}
impl<F: Field> Event<F> {
/// Reads an [`Event`] from a single [`Row`] in a Parquet file.
///
/// # Panics
///
/// This method currently panics if the list-like group types don't contain floats. This
/// eventually needs to be sorted out.
fn read_parquet_row(
index: usize,
row: Result<Row, parquet::errors::ParquetError>,
method: ReadMethod<F>,
) -> Result<Self, RustitudeError> {
let mut event = Self {
index,
..Default::default()
};
let mut e_fs: Vec<F> = Vec::new();
let mut px_fs: Vec<F> = Vec::new();
let mut py_fs: Vec<F> = Vec::new();
let mut pz_fs: Vec<F> = Vec::new();
for (name, field) in row?.get_column_iter() {
match (name.as_str(), field) {
("E_Beam", ParquetField::Float(value)) => {
event.beam_p4.set_e(F::convert_f32(*value));
if matches!(method, ReadMethod::EPSInBeam) {
event.beam_p4.set_pz(F::convert_f32(*value));
}
}
("Px_Beam", ParquetField::Float(value)) => {
if matches!(method, ReadMethod::EPSInBeam) {
event.eps[0] = F::convert_f32(*value);
} else {
event.beam_p4.set_px(F::convert_f32(*value));
}
}
("Py_Beam", ParquetField::Float(value)) => {
if matches!(method, ReadMethod::EPSInBeam) {
event.eps[1] = F::convert_f32(*value);
} else {
event.beam_p4.set_py(F::convert_f32(*value));
}
}
("Pz_Beam", ParquetField::Float(value)) => {
if !matches!(method, ReadMethod::EPSInBeam) {
event.beam_p4.set_pz(F::convert_f32(*value));
}
}
("Weight", ParquetField::Float(value)) => {
event.weight = F::convert_f32(*value);
}
("EPS", ParquetField::ListInternal(list)) => match method {
ReadMethod::Standard => {
event.eps = Vector3::from_vec(
list.elements()
.iter()
.map(|field| {
if let ParquetField::Float(value) = field {
F::convert_f32(*value)
} else {
panic!()
}
})
.collect(),
);
}
ReadMethod::EPS(x, y, z) => *event.eps = *Vector3::new(x, y, z),
_ => {}
},
("E_FinalState", ParquetField::ListInternal(list)) => {
e_fs = list
.elements()
.iter()
.map(|field| {
if let ParquetField::Float(value) = field {
F::convert_f32(*value)
} else {
panic!()
}
})
.collect()
}
("Px_FinalState", ParquetField::ListInternal(list)) => {
px_fs = list
.elements()
.iter()
.map(|field| {
if let ParquetField::Float(value) = field {
F::convert_f32(*value)
} else {
panic!()
}
})
.collect()
}
("Py_FinalState", ParquetField::ListInternal(list)) => {
py_fs = list
.elements()
.iter()
.map(|field| {
if let ParquetField::Float(value) = field {
F::convert_f32(*value)
} else {
panic!()
}
})
.collect()
}
("Pz_FinalState", ParquetField::ListInternal(list)) => {
pz_fs = list
.elements()
.iter()
.map(|field| {
if let ParquetField::Float(value) = field {
F::convert_f32(*value)
} else {
panic!()
}
})
.collect()
}
_ => {}
}
}
event.recoil_p4 = FourMomentum::new(e_fs[0], px_fs[0], py_fs[0], pz_fs[0]);
event.daughter_p4s = e_fs[1..]
.iter()
.zip(px_fs[1..].iter())
.zip(py_fs[1..].iter())
.zip(pz_fs[1..].iter())
.map(|(((e, px), py), pz)| FourMomentum::new(*e, *px, *py, *pz))
.collect();
// let final_state_p4 = event.recoil_p4 + event.daughter_p4s.iter().sum();
// event.beam_p4 = event.beam_p4.boost_along(&final_state_p4);
// event.recoil_p4 = event.recoil_p4.boost_along(&final_state_p4);
// for dp4 in event.daughter_p4s.iter_mut() {
// *dp4 = dp4.boost_along(&final_state_p4);
// }
Ok(event)
}
}
/// An array of [`Event`]s with some helpful methods for accessing and parsing the data they
/// contain.
///
/// A [`Dataset`] can be loaded from either Parquet and ROOT files using the corresponding
/// `Dataset::from_*` methods. Events are stored in an [`Arc<Vec<Event>>`], since we
/// rarely need to write data to a dataset (splitting/selecting/rejecting events) but often need to
/// read events from a dataset.
#[derive(Default, Debug, Clone)]
pub struct Dataset<F: Field> {
/// Storage for events.
pub events: Arc<Vec<Event<F>>>,
}
impl<F: Field> Dataset<F> {
// TODO: can we make an events(&self) -> &Vec<Field> method that actually works without cloning?
/// Retrieves the weights from the events in the dataset
pub fn weights(&self) -> Vec<F> {
self.events.iter().map(|e| e.weight).collect()
}
/// Retrieves the weights from the events in the dataset which have the given indices.
pub fn weights_indexed(&self, indices: &[usize]) -> Vec<F> {
indices
.iter()
.map(|index| self.events[*index].weight)
.collect()
}
/// Splits the dataset by the mass of the combination of specified daughter particles in the
/// event. If no daughters are given, the first and second particle are assumed to form the
/// desired combination. This method returns [`Vec<usize>`]s corresponding to the indices of
/// events in each bin, the underflow bin, and the overflow bin respectively. This is intended
/// to be used in conjunction with
/// [`Manager::evaluate_indexed`](`crate::manager::Manager::evaluate_indexed`).
pub fn split_m(
&self,
range: (F, F),
bins: usize,
daughter_indices: Option<Vec<usize>>,
) -> (Vec<Vec<usize>>, Vec<usize>, Vec<usize>) {
let mass = |e: &Event<F>| {
let p4: FourMomentum<F> = daughter_indices
.clone()
.unwrap_or_else(|| vec![0, 1])
.iter()
.map(|i| e.daughter_p4s[*i])
.sum();
p4.m()
};
self.get_binned_indices(mass, range, bins)
}
/// Generates a new [`Dataset`] from a Parquet file.
///
/// # Errors
///
/// This method will fail if any individual event is missing all of the required fields, if
/// they have the wrong type, or if the file doesn't exist/can't be read for any reason.
pub fn from_parquet(path: &str, method: ReadMethod<F>) -> Result<Self, RustitudeError> {
let path = Path::new(path);
let file = File::open(path)?;
let reader = SerializedFileReader::new(file)?;
let row_iter = reader.get_row_iter(None)?;
Ok(Self::new(
row_iter
.enumerate()
.map(|(i, row)| Event::read_parquet_row(i, row, method))
.collect::<Result<Vec<Event<F>>, RustitudeError>>()?,
))
}
/// Extract a branch from a ROOT `TTree` containing a [`Field`] (float in C). This method
/// converts the underlying element to an [`Field`].
fn extract_f32(path: &str, ttree: &ReaderTree, branch: &str) -> Result<Vec<F>, RustitudeError> {
let res = ttree
.branch(branch)
.ok_or_else(|| {
RustitudeError::OxyrootError(format!(
"Could not find {} branch in {}",
branch, path
))
})?
.as_iter::<f64>()
.map_err(|err| RustitudeError::OxyrootError(err.to_string()))?
.map(F::convert_f64)
.collect();
Ok(res)
}
/// Extract a branch from a ROOT `TTree` containing an array of [`Field`]s (floats in C). This
/// method converts the underlying elements to [`Field`]s.
fn extract_vec_f32(
path: &str,
ttree: &ReaderTree,
branch: &str,
) -> Result<Vec<Vec<F>>, RustitudeError> {
let res: Vec<Vec<F>> = ttree
.branch(branch)
.ok_or_else(|| {
RustitudeError::OxyrootError(format!(
"Could not find {} branch in {}",
branch, path
))
})?
.as_iter::<Slice<f64>>()
.map_err(|err| RustitudeError::OxyrootError(err.to_string()))?
.map(|v| v.into_vec().into_iter().map(F::convert_f64).collect())
.collect();
Ok(res)
}
/// Generates a new [`Dataset`] from a ROOT file.
///
/// # Errors
///
/// This method will fail if any individual event is missing all of the required fields, if
/// they have the wrong type, or if the file doesn't exist/can't be read for any reason.
pub fn from_root(path: &str, method: ReadMethod<F>) -> Result<Self, RustitudeError> {
let ttree = RootFile::open(path)
.map_err(|err| RustitudeError::OxyrootError(err.to_string()))?
.get_tree("kin")
.map_err(|err| RustitudeError::OxyrootError(err.to_string()))?;
let weight: Vec<F> = Self::extract_f32(path, &ttree, "Weight")?;
let e_beam: Vec<F> = Self::extract_f32(path, &ttree, "E_Beam")?;
let px_beam: Vec<F> = Self::extract_f32(path, &ttree, "Px_Beam")?;
let py_beam: Vec<F> = Self::extract_f32(path, &ttree, "Py_Beam")?;
let pz_beam: Vec<F> = Self::extract_f32(path, &ttree, "Pz_Beam")?;
let e_fs: Vec<Vec<F>> = Self::extract_vec_f32(path, &ttree, "E_FinalState")?;
let px_fs: Vec<Vec<F>> = Self::extract_vec_f32(path, &ttree, "Px_FinalState")?;
let py_fs: Vec<Vec<F>> = Self::extract_vec_f32(path, &ttree, "Py_FinalState")?;
let pz_fs: Vec<Vec<F>> = Self::extract_vec_f32(path, &ttree, "Pz_FinalState")?;
let eps_extracted: Vec<Vec<F>> = if matches!(method, ReadMethod::Standard) {
Self::extract_vec_f32(path, &ttree, "EPS")?
} else {
vec![vec![F::ZERO; 3]; weight.len()]
};
Ok(Self::new(
izip!(
weight,
e_beam,
px_beam,
py_beam,
pz_beam,
e_fs,
px_fs,
py_fs,
pz_fs,
eps_extracted
)
.enumerate()
.map(
|(i, (w, e_b, px_b, py_b, pz_b, e_f, px_f, py_f, pz_f, eps_vec))| {
let (beam_p4, eps) = match method {
ReadMethod::Standard => (
FourMomentum::new(e_b, px_b, py_b, pz_b),
Vector3::from_vec(eps_vec),
),
ReadMethod::EPSInBeam => (
FourMomentum::new(e_b, F::ZERO, F::ZERO, e_b),
Vector3::new(px_b, py_b, pz_b),
),
ReadMethod::EPS(x, y, z) => (
FourMomentum::new(e_b, px_b, py_b, pz_b),
Vector3::new(x, y, z),
),
};
Event {
index: i,
weight: w,
beam_p4,
recoil_p4: FourMomentum::new(e_f[0], px_f[0], py_f[0], pz_f[0]),
daughter_p4s: izip!(
e_f[1..].iter(),
px_f[1..].iter(),
py_f[1..].iter(),
pz_f[1..].iter()
)
.map(|(e, px, py, pz)| FourMomentum::new(*e, *px, *py, *pz))
.collect(),
eps,
}
},
)
.collect(),
))
}
/// Generate a new [`Dataset`] from a [`Vec<Event>`].
pub fn new(events: Vec<Event<F>>) -> Self {
info!("Dataset created with {} events", events.len());
Self {
events: Arc::new(events),
}
}
/// Checks if the dataset is empty.
pub fn is_empty(&self) -> bool {
self.events.is_empty()
}
/// Returns the number of events in the dataset.
pub fn len(&self) -> usize {
self.events.len()
}
/// Returns a set of indices which represent a bootstrapped [`Dataset`]. This method is to be
/// used in conjunction with
/// [`Manager::evaluate_indexed`](crate::manager::Manager::evaluate_indexed).
pub fn get_bootstrap_indices(&self, seed: usize) -> Vec<usize> {
fastrand::seed(seed as u64);
let mut inds: Vec<usize> = repeat_with(|| fastrand::usize(0..self.len()))
.take(self.len())
.collect();
inds.sort_unstable();
inds
}
/// Selects indices of events in a dataset using the given query. Indices of events for which
/// the query returns `true` will end up in the first member of the returned tuple, and indices
/// of events which return `false` will end up in the second member.
pub fn get_selected_indices(
&self,
query: impl Fn(&Event<F>) -> bool + Sync + Send,
) -> (Vec<usize>, Vec<usize>) {
let (mut indices_selected, mut indices_rejected): (Vec<usize>, Vec<usize>) =
self.events.par_iter().partition_map(|event| {
if query(event) {
Either::Left(event.index)
} else {
Either::Right(event.index)
}
});
indices_selected.sort_unstable();
indices_rejected.sort_unstable();
(indices_selected, indices_rejected)
}
/// Splits the dataset by the given query. This method returns [`Vec<usize>`]s corresponding to
/// the indices of events in each bin, the underflow bin, and the overflow bin respectively.
/// This is intended to be used in conjunction with
/// [`Manager::evaluate_indexed`](`crate::manager::Manager::evaluate_indexed`).
pub fn get_binned_indices(
&self,
variable: impl Fn(&Event<F>) -> F + Sync + Send,
range: (F, F),
nbins: usize,
) -> (Vec<Vec<usize>>, Vec<usize>, Vec<usize>) {
let mut bins: Vec<F> = Vec::with_capacity(nbins + 1);
let width = (range.1 - range.0) / <F as Field>::convert_usize(nbins);
for m in 0..=nbins {
bins.push(F::fmul_add(width, <F as Field>::convert_usize(m), range.0));
}
let (underflow, _) = self.get_selected_indices(|event| variable(event) < bins[0]);
let (overflow, _) =
self.get_selected_indices(|event| variable(event) >= bins[bins.len() - 1]);
let binned_indices = bins
.into_iter()
.tuple_windows()
.map(|(lb, ub)| {
let (sel, _) = self.get_selected_indices(|event| {
let res = variable(event);
lb <= res && res < ub
});
sel
})
.collect();
(binned_indices, underflow, overflow)
}
}
impl<F: Field> Add for Dataset<F> {
type Output = Self;
fn add(self, other: Self) -> Self::Output {
let mut combined_events = Vec::with_capacity(self.events.len() + other.events.len());
combined_events.extend(Arc::try_unwrap(self.events).unwrap_or_else(|arc| (*arc).clone()));
combined_events.extend(Arc::try_unwrap(other.events).unwrap_or_else(|arc| (*arc).clone()));
Self {
events: Arc::new(combined_events),
}
}
}