1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
//! # Rustitude
//! ## Demystifying Amplitude Analysis with Rust and Python
//!
//! The `rustitude-core` crate aims to implement common amplitude analysis techniques in Rust with
//! bindings to Python. This crate does not include the Python bindings, see the [GitHub
//! repo](https://github.com/denehoffman/rustitude) for more information on the Python API.
//!
//! The three core principles of `rustitude-core` are:
//! 1. Parallelization over events is automatically handeled by a [`Manager`](`crate::manager::Manager`).
//! 2. Amplitudes are written to do as much work as possible ahead of time, and evaluations use
//! caching as much as possible automatically.
//! 3. Developers just need to implement the [`Node`](`crate::amplitude::Node`) trait to write a new
//! amplitude, everything else is handled by the crate.
//!
//! ## Table of Contents
//!
//! * [Dataset Structure](#dataset-structure)
//! * [Creating a New Amplitude](#creating-a-new-amplitude)
//! * [Combining Amplitudes into Models](#combining-amplitudes-into-models)
//! * [Managing Parameters](#managing-parameters)
//! * [Evaluating Likelihoods](#evaluating-likelihoods)
//!
//! # Dataset Structure
//!
//! A [`Dataset`](`crate::dataset::Dataset`) is essentially just a wrapper for a [`Vec`] of
//! [`Event`](`crate::dataset::Event`)s. The current [`Event`](`crate::dataset::Event`) structure is as follows:
//!
//! ```ignore
//! pub struct Event {
//! pub index: usize, // Position of event within dataset
//! pub weight: f32, // Event weight
//! pub beam_p4: FourMomentum, // Beam four-momentum
//! pub recoil_p4: FourMomentum, // Recoil four-momentum
//! pub daughter_p4s: Vec<FourMomentum>, // Four-momenta of final state particles sans recoil
//! pub eps: Vector3<f32>, // Beam polarization vector
//! }
//! ```
//!
//! In the Rust API, we can create [`Dataset`](`crate::dataset::Dataset`)s from `ROOT` files as well as
//! `Parquet` files. `ROOT` file reading is done through [`oxyroot`] - This still has some issues,
//! and large files or files with user metadata might fail to load. The alternative `Parquet`
//! format can be obtained from a `ROOT` file by using a conversion script like the one provided
//! [here](https://github.com/denehoffman/rustitude/blob/main/bin/convert). By default, we expect
//! all of the [`Event`](`crate::dataset::Event`) fields to be mirrored as the following branches:
//!
//! | Branch Name | Data Type | Notes |
//! |---|---|---|
//! | `Weight` | Float32 | |
//! | `E_Beam` | Float32 | |
//! | `Px_Beam` | Float32 | |
//! | `Py_Beam` | Float32 | |
//! | `Pz_Beam` | Float32 | |
//! | `E_FinalState` | \[Float32\] | \[recoil, daughter #1, daughter #2, ...\] |
//! | `Px_FinalState` | \[Float32\] | \[recoil, daughter #1, daughter #2, ...\] |
//! | `Py_FinalState` | \[Float32\] | \[recoil, daughter #1, daughter #2, ...\] |
//! | `Pz_FinalState` | \[Float32\] | \[recoil, daughter #1, daughter #2, ...\] |
//! | `EPS` | \[Float32\] | \[$`P_\gamma \cos(\Phi)`$, $`P_\gamma \sin(\Phi)`$, $`0.0`$\] for linear polarization with magnitude $`P_\gamma`$ and angle $`\Phi`$ |
//!
//! A `Parquet` file with these columns can be loaded with the following:
//! ```ignore
//! use rustitude_core::prelude::*;
//! fn main() -> Result<(), RustitudeError> {
//! let dataset = Dataset::from_parquet("path/to/file.parquet")?;
//! println!("{}", dataset.events()[0]); // print first event
//! }
//! ```
//!
//! Because the beam is often directed along the $`z`$-axis, there is an alternative way to store
//! the `EPS` vector without a new branch (for linear polarization. The $`x`$ and $`y`$ components
//! of `EPS` can be stored as `Px_Beam` and `Py_Beam` respectively, and the format can be loaded
//! using [`Dataset::from_parquet_eps_in_beam`](`crate::dataset::Dataset::from_parquet_eps_in_beam`).
//!
//! # Creating a New Amplitude
//!
//! To make a new amplitude, we will first create a new struct and then implement
//! [`Node`](`crate::amplitude::Node`). Let's start with a trivial example, an amplitude which returns a
//! complex scalar. This particular amplitude is already implemented as a convenience struct called
//! [`ComplexScalar`](`crate::amplitude::ComplexScalar`).
//!
//! ```ignore
//! use rustitude_core::prelude::*;
//!
//! #[derive(Clone)]
//! pub struct ComplexScalar;
//! impl<F: Field> Node<F> for ComplexScalar {
//! fn calculate(&self, parameters: &[F], _event: &Event<F>) -> Result<Complex<F>, RustitudeError> {
//! Ok(Complex::new(parameters[0], parameters[1]))
//! }
//!
//! fn parameters(&self) -> Vec<String> {
//! vec!["real".to_string(), "imag".to_string()]
//! }
//! }
//!
//! ```
//!
//! For a second example, we can look at the precalculation feature. Here's an Dalitz-like
//! amplitude for the $`\omega`$ particle:
//! ```ignore
//! use rayon::prelude::*;
//! use rustitude_core::prelude::*;
//!
//! #[derive(Default, Clone)]
//! pub struct OmegaDalitz<F: Field> {
//! dalitz_z: Vec<F>,
//! dalitz_sin3theta: Vec<F>,
//! lambda: Vec<F>,
//! }
//!
//! impl<F: Field> Node<F> for OmegaDalitz<F> {
//! fn precalculate(&mut self, dataset: &Dataset<F>) -> Result<(), RustitudeError> {
//! (self.dalitz_z, (self.dalitz_sin3theta, self.lambda)) = dataset
//! .events
//! .par_iter()
//! .map(|event| {
//! let pi0 = event.daughter_p4s[0];
//! let pip = event.daughter_p4s[1];
//! let pim = event.daughter_p4s[2];
//! let omega = pi0 + pip + pim;
//!
//! let dalitz_s = (pip + pim).m2();
//! let dalitz_t = (pip + pi0).m2();
//! let dalitz_u = (pim + pi0).m2();
//!
//! let m3pi = (F::TWO * pip.m()) + pi0.m();
//! let dalitz_d = F::TWO * omega.m() * (omega.m() - m3pi);
//! let dalitz_sc = (F::ONE / F::THREE) * (omega.m2() + pip.m2() + pim.m2() + pi0.m2());
//! let dalitz_x = F::fsqrt(F::THREE) * (dalitz_t - dalitz_u) / dalitz_d;
//! let dalitz_y = F::THREE * (dalitz_sc - dalitz_s) / dalitz_d;
//!
//! let dalitz_z = dalitz_x * dalitz_x + dalitz_y * dalitz_y;
//! let dalitz_sin3theta = F::fsin(F::THREE * F::fasin(dalitz_y / F::fsqrt(dalitz_z)));
//!
//! let pip_omega = pip.boost_along(&omega);
//! let pim_omega = pim.boost_along(&omega);
//! let pi_cross = pip_omega.momentum().cross(&pim_omega.momentum());
//!
//! let lambda = (F::FOUR / F::THREE) * F::fabs(pi_cross.dot(&pi_cross))
//! / ((F::ONE / F::NINE)
//! * (omega.m2() - (F::TWO * pip.m() + pi0.m()).fpowi(2)).fpowi(2));
//!
//! (dalitz_z, (dalitz_sin3theta, lambda))
//! })
//! .unzip();
//! Ok(())
//! }
//!
//! fn calculate(&self, parameters: &[F], event: &Event<F>) -> Result<Complex<F>, RustitudeError> {
//! let dalitz_z = self.dalitz_z[event.index];
//! let dalitz_sin3theta = self.dalitz_sin3theta[event.index];
//! let lambda = self.lambda[event.index];
//! let alpha = parameters[0];
//! let beta = parameters[1];
//! let gamma = parameters[2];
//! let delta = parameters[3];
//! Ok(F::fsqrt(F::fabs(
//! lambda
//! * (F::ONE
//! + F::TWO * alpha * dalitz_z
//! + F::TWO * beta * dalitz_z.fpowf(F::THREE / F::TWO) * dalitz_sin3theta
//! + F::TWO * gamma * dalitz_z.fpowi(2)
//! + F::TWO * delta * dalitz_z.fpowf(F::FIVE / F::TWO) * dalitz_sin3theta),
//! ))
//! .into())
//! }
//!
//! fn parameters(&self) -> Vec<String> {
//! vec![
//! "alpha".to_string(),
//! "beta".to_string(),
//! "gamma".to_string(),
//! "delta".to_string(),
//! ]
//! }
//! }
//! ```
//! Note several of the generic features which allow this amplitude to be used with different
//! numeric data types. Because it isn't specifically written for 64-bit floats (`f64`s), we can
//! conduct analyses that use the same code with 32-bit floats (`f32`s), which saves on memory and
//! time while sacrificing a bit of precision. In fact, we can go a step further and conduct the
//! majority of an analysis in 32-bit mode, switching over to 64-bit mode when we actually get near
//! a solution and want the increased accuracy!
//!
//! The [`Field`] trait contains a few helper constants and functions to make this easier for those
//! who aren't as familiar with rust. Constants are provided for whole numbers between zero and ten
//! (inclusively), and the [`Field`] trait also contains a few mathematical constants like
//! [`Field::PI()`][`num::traits::FloatConst::PI()`] and
//! [`Field::SQRT_2()`][`num::traits::FloatConst::SQRT_2()`]. Most mathematical functions are
//! aliased with a leading "f" to simplify duplicated function definitions in the [`num::Float`]
//! and [`nalgebra::RealField`] traits. For instance, [`Field::fabs()`] calls
//! [`num::Float::abs()`], since the alternative would be to use the fully qualified name to
//! distinguish it from [`nalgebra::ComplexField::abs()`].
//!
//! # Combining Amplitudes into Models
//! We can use several operations to modify and combine amplitudes. Since amplitudes yield complex
//! values, the following convenience methods are provided:
//! [`real`](`amplitude::AmpLike::real`), and [`imag`](`amplitude::AmpLike::imag`) give the real and
//! imaginary part of the amplitude, respectively. Additionally, amplitudes can be added and multiplied
//! together using operator overloading. [`Model`](`amplitude::Model`)s implicitly take the
//! absolute square of each provided term in their constructor and add those results incoherently.
//!
//! To incoherently sum two [`Amplitude`](`amplitude::Amplitude`)s, say `amp1` and `amp2`, we would
//! first assume that we actually want the absolute square of the given term (or write our
//! amplitude as the square root of what we really want), and then include them both in our model:
//!
//! ```ignore
//! use rustitude_core::prelude::*;
//! // Define amp1/amp2: Amplitude here...
//! let model = model!(amp1, amp2)
//! ```
//!
//! To reiterate, this would yield something like $`\left|\text{amp}_1\right|^2 + \left|\text{amp}_2\right|^2`$.
//!
//! The [`Scalar`](`crate::amplitude::Scalar`),
//! [`ComplexScalar`](`crate::amplitude::ComplexScalar`), and
//! [`PolarComplexScalar`](`crate::amplitude::PolarComplexScalar`) amplitudes all have convenience
//! methods, [`scalar`](`crate::amplitude::scalar`), [`cscalar`](`crate::amplitude::cscalar`), and
//! [`pcscalar`](`crate::amplitude::pcscalar`) respectively. We then wrap the final expression in a
//! [`Model`](crate::amplitude::Model) which can manage all of the
//! [`Parameter`](`crate::amplitude::Parameter`)s.
//!
//! ```ignore
//! use rustitude_core::prelude::*;
//!
//! #[derive(Default)]
//! pub struct OmegaDalitz { ... }
//! impl Node for OmegaDalitz { ... }
//!
//! let complex_term = cscalar("my complex scalar");
//! let omega_dalitz = Amplitude::new("omega dalitz", OmegaDalitz::default());
//! let term = complex_term * omega_dalitz;
//! term.print_tree();
//! // [ norm sqr ]
//! // ┗━[ * ]
//! // ┣━ !my complex scalar(real, imag)
//! // ┗━ !omega dalitz(alpha, beta, gamma, delta)
//! let model = model!(term);
//! ```
//!
//! # Managing Parameters
//!
//! Now that we have a model, we might want to constrain or fix parameters. Parameters are
//! identified solely by their name and the name of the amplitude they are associated with. This
//! means that two amplitudes with the same name will share parameters which also have the same
//! name. If we want to intentionally set one parameter in a particular amplitude equal to another,
//! we can use the [`Model::constrain`](`crate::amplitude::Model::constrain`). This will reduce the
//! number of free parameters in the fit, and will yield a
//! [`RustitudeError`](`crate::errors::RustitudeError`) if either of the parameters is not found.
//! Parameters can also be fixed and freed using [`Model::fix`](`crate::amplitude::Model::fix`) and
//! [`Model::free`](`crate::amplitude::Model::free`) respectively, and these methods are mirrored in
//! [`Manager`](`crate::manager::Manager`) and
//! [`ExtendedLogLikelihood`](`crate::manager::ExtendedLogLikelihood`) for convenience.
//!
//! # Evaluating Likelihoods
//!
//! If we wanted to obtain the negative log-likelihood for this particular amplitude, we need to
//! link our [`Model`](`crate::amplitude::Model`) to a [`Dataset`](`crate::dataset::Dataset`). This is done using a
//! [`Manager`](`crate::manager::Manager``). Finally, two [`Manager`](`crate::manager::Manager``)s may be combined into an
//! [`ExtendedLogLikelihood`](`crate::manager::ExtendedLogLikelihood`). Both of these manager-like structs have an
//! `evaluate` method that takes some parameters as a `&[f32]` (along with a [`usize`] for the
//! number of threads to use for the [`ExtendedLogLikelihood`](`crate::manager::ExtendedLogLikelihood`)).
//!
//! ```ignore
//! use rustitude_core::prelude::*;
//!
//! #[derive(Default)]
//! pub struct OmegaDalitz { ... }
//! impl Node for OmegaDalitz { ... }
//!
//! fn main() -> Result<(), RustitudeError> {
//! let complex_term = cscalar("my complex scalar");
//! let omega_dalitz = Amplitude::new("omega dalitz", OmegaDalitz::default());
//! let term = complex_term * omega_dalitz;
//! let model = model!(term);
//! let dataset = Dataset::from_parquet("path/to/file.parquet")?;
//! let dataset_mc = Dataset::from_parquet("path/to/monte_carlo_file.parquet")?;
//! let nll = ExtendedLogLikelihood::new(
//! Manager::new(&model, &dataset),
//! Manager::new(&model, &dataset_mc)
//! );
//! println!("NLL: {}", nll.evaluate(&nll.get_initial())?);
//! Ok(())
//! }
//! ```
//!
//! # Fitting Amplitudes to Data
//!
//! Of course, the goal of all of this is to be able to construct a
//! [`Model`](`crate::amplitude::Model`), load up a [`Dataset`](`crate::dataset::Dataset`), create
//! an [`ExtendedLogLikelihood`](`crate::manager::ExtendedLogLikelihood`), and fit the model to
//! data. Here's an example to show how that might be accomplished:
//!
//! ```ignore
//! use ganesh::algorithms::NelderMead;
//! use ganesh::prelude::*;
//! use rustitude::gluex::harmonics::Zlm;
//! use rustitude::gluex::{
//! resonances::BreitWigner,
//! utils::{Frame, Reflectivity, Wave},
//! };
//! use rustitude::prelude::*;
//! fn main() -> Result<(), RustitudeError> {
//! let a2_1320 = BreitWigner::new(&[0], &[1], 2).named("a2_1320");
//! let a2_1700 = BreitWigner::new(&[0], &[1], 2).named("a2_1700");
//! let pw_s_wave = piecewise_m("pw_s_wave", 40, (1.04, 1.72));
//! let zlm_s0p = Zlm::new(Wave::S0, Reflectivity::Positive, Frame::Helicity).named("zlm_s0p");
//! let zlm_s0n = Zlm::new(Wave::S0, Reflectivity::Negative, Frame::Helicity).named("zlm_s0n");
//! let zlm_dn2p = Zlm::new(Wave::Dn2, Reflectivity::Positive, Frame::Helicity).named("zlm_dn2p");
//! let zlm_dn1p = Zlm::new(Wave::Dn1, Reflectivity::Positive, Frame::Helicity).named("zlm_dn1p");
//! let zlm_d0p = Zlm::new(Wave::D0, Reflectivity::Positive, Frame::Helicity).named("zlm_d0p");
//! let zlm_d1p = Zlm::new(Wave::D1, Reflectivity::Positive, Frame::Helicity).named("zlm_d1p");
//! let zlm_d2p = Zlm::new(Wave::D2, Reflectivity::Positive, Frame::Helicity).named("zlm_d2p");
//! let zlm_dn2n = Zlm::new(Wave::Dn2, Reflectivity::Negative, Frame::Helicity).named("zlm_dn2n");
//! let zlm_dn1n = Zlm::new(Wave::Dn1, Reflectivity::Negative, Frame::Helicity).named("zlm_dn1n");
//! let zlm_d0n = Zlm::new(Wave::D0, Reflectivity::Negative, Frame::Helicity).named("zlm_d0n");
//! let zlm_d1n = Zlm::new(Wave::D1, Reflectivity::Negative, Frame::Helicity).named("zlm_d1n");
//! let zlm_d2n = Zlm::new(Wave::D2, Reflectivity::Negative, Frame::Helicity).named("zlm_d2n");
//! let pos_d_wave = zlm_dn2p + zlm_dn1p + zlm_d0p + zlm_d1p + zlm_d2p;
//! let neg_d_wave = zlm_dn2n + zlm_dn1n + zlm_d0n + zlm_d1n + zlm_d2n;
//! let pos_real =
//! zlm_s0p.real() * &pw_s_wave + &a2_1320 * &pos_d_wave.real() + &a2_1700 * &pos_d_wave.real();
//! let pos_imag =
//! zlm_s0p.imag() * &pw_s_wave + &a2_1320 * &pos_d_wave.imag() + &a2_1700 * &pos_d_wave.imag();
//! let neg_real =
//! zlm_s0n.real() * &pw_s_wave + &a2_1320 * &neg_d_wave.real() + &a2_1700 * &neg_d_wave.real();
//! let neg_imag =
//! zlm_s0n.imag() * &pw_s_wave + &a2_1320 * &neg_d_wave.imag() + &a2_1700 * &neg_d_wave.imag();
//! let model = model!(pos_real, pos_imag, neg_real, neg_imag);
//! let ds_data = Dataset::from_parquet_eps_in_beam("path/to/data.root")?;
//! let ds_accmc = Dataset::from_parquet_eps_in_beam("path/to/accmc.root")?;
//! let mut ell = ExtendedLogLikelihood::new(
//! Manager::new(&model, &ds_data)?,
//! Manager::new(&model, &ds_accmc)?,
//! );
//! ell.set_initial("a2_1320", "mass", 1.3182)?;
//! ell.set_initial("a2_1320", "width", 0.1111)?;
//! ell.fix("a2_1700", "mass", 1.698)?;
//! ell.fix("a2_1700", "width", 0.265)?;
//! ell.fix("pw_s_wave", "bin 10 im", 0.0)?;
//!
//! let mut nm = NelderMead::new(ell.clone(), &ell.get_initial(), None);
//! minimize!(nm, 1000)?; // Run 1000 steps
//! let (best_pars, best_fx) = nm.best();
//! for (par_name, par_value) in ell.free_parameters().iter().zip(best_pars) {
//! println!("{} -> {} (NLL = {})", par_name, par_value, best_fx);
//! }
//! Ok(())
//! }
//! ```
#![warn(
clippy::nursery,
clippy::unwrap_used,
clippy::expect_used,
clippy::doc_markdown,
clippy::doc_link_with_quotes,
clippy::missing_safety_doc,
clippy::missing_panics_doc,
clippy::missing_errors_doc,
clippy::perf,
clippy::style,
missing_docs
)]
#![allow(deprecated)]
pub mod amplitude;
pub mod dataset;
pub mod four_momentum;
pub mod manager;
/// Recommended namespace for use and development.
pub mod prelude {
pub use crate::amplitude::{
cscalar, pcscalar, piecewise_m, scalar, AmpLike, Amplitude, AsTree, Imag, Model, Node,
Parameter, Piecewise, Product, Real, Sum,
};
pub use crate::dataset::{Dataset, Event};
pub use crate::errors::RustitudeError;
pub use crate::four_momentum::FourMomentum;
pub use crate::manager::{ExtendedLogLikelihood, Manager};
pub use crate::{model, Field};
// pub use crate::{constants::*, ComplexField, Field};
pub use nalgebra::{ComplexField, RealField, Vector3};
pub use num::Complex;
}
/// A trait which describes a field of "Real" numbers which can be used in calculating amplitudes.
pub trait Field:
nalgebra::RealField
+ std::iter::Sum
+ std::iter::Product
+ Copy
+ Clone
+ Default
+ ganesh::core::Field
+ num::Float
+ num::traits::FloatConst
{
/// See [`f64::MIN_POSITIVE`]
const MIN_POSITIVE: Self;
/// See [`f64::MAX`]
const MAX: Self;
/// See [`f64::MIN`]
const MIN: Self;
/// See [`f64::INFINITY`]
const INFINITY: Self;
/// See [`f64::NEG_INFINITY`]
const NEG_INFINITY: Self;
/// Alias for 0.0
const ZERO: Self;
/// Alias for 1.0
const ONE: Self;
/// Alias for 2.0
const TWO: Self;
/// Alias for 3.0
const THREE: Self;
/// Alias for 4.0
const FOUR: Self;
/// Alias for 5.0
const FIVE: Self;
/// Alias for 6.0
const SIX: Self;
/// Alias for 7.0
const SEVEN: Self;
/// Alias for 8.0
const EIGHT: Self;
/// Alias for 9.0
const NINE: Self;
/// Alias for 10.0
const TEN: Self;
/// Shorthand to convert an `f64` into a [`Field`].
/// See also: [`Field::convert_f64`].
fn f(x: f64) -> Self {
Self::convert_f64(x)
}
/// Shorthand to convert a [`Vec<f64>`] into a [`Vec<Field>`].
/// See also: [`Field::convert_vec_f64`].
fn fv(x: Vec<f64>) -> Vec<Self> {
Self::convert_vec_f64(x)
}
/// Shorthand to convert a `[f64; N]` into a `[Field; N]`.
/// See also: [`Field::convert_array_f64`].
fn fa<const N: usize>(x: [f64; N]) -> [Self; N] {
Self::convert_array_f64(x)
}
/// Converts a `[f64; N]` into a `[Field; N]`.
fn convert_array_f64<const N: usize>(x: [f64; N]) -> [Self; N] {
std::array::from_fn(|i| Self::convert_f64(x[i]))
}
/// Converts a [`Vec<f64>`] into a [`Vec<Field>`].
fn convert_vec_f64(x: Vec<f64>) -> Vec<Self> {
x.into_iter().map(Self::f).collect()
}
/// Converts an `f64` into a [`Field`].
fn convert_f64(x: f64) -> Self;
/// Converts an `f32` into a [`Field`].
fn convert_f32(x: f32) -> Self;
/// Converts a `usize` into a [`Field`].
fn convert_usize(x: usize) -> Self;
/// Converts an `isize` into a [`Field`].
fn convert_isize(x: isize) -> Self;
/// Converts a `u32` into a [`Field`].
fn convert_u32(x: u32) -> Self;
/// Shorthand for [`num::Float::abs`].
fn fabs(self) -> Self {
num::Float::abs(self)
}
/// Shorthand for [`num::Float::sqrt`].
fn fsqrt(self) -> Self {
num::Float::sqrt(self)
}
/// Shorthand for [`num::Float::cbrt`].
fn fcbrt(self) -> Self {
num::Float::cbrt(self)
}
/// Shorthand for [`num::Float::powi`].
fn fpowi(self, n: i32) -> Self {
num::Float::powi(self, n)
}
/// Shorthand for [`num::Float::powf`].
fn fpowf(self, n: Self) -> Self {
num::Float::powf(self, n)
}
/// Shorthand for [`num::Float::sin`].
fn fsin(self) -> Self {
num::Float::sin(self)
}
/// Shorthand for [`num::Float::cos`].
fn fcos(self) -> Self {
num::Float::cos(self)
}
/// Shorthand for [`num::Float::tan`].
fn ftan(self) -> Self {
num::Float::tan(self)
}
/// Shorthand for [`num::Float::asin`].
fn fasin(self) -> Self {
num::Float::asin(self)
}
/// Shorthand for [`num::Float::acos`].
fn facos(self) -> Self {
num::Float::acos(self)
}
/// Shorthand for [`num::Float::atan`].
fn fatan(self) -> Self {
num::Float::atan(self)
}
/// Shorthand for [`nalgebra::RealField::atan2`].
fn fatan2(self, other: Self) -> Self {
nalgebra::RealField::atan2(self, other)
}
/// Shorthand for [`num::Float::sinh`].
fn fsinh(self) -> Self {
num::Float::sinh(self)
}
/// Shorthand for [`num::Float::cosh`].
fn fcosh(self) -> Self {
num::Float::cosh(self)
}
/// Shorthand for [`num::Float::tanh`].
fn ftanh(self) -> Self {
num::Float::tanh(self)
}
/// Shorthand for [`num::Float::asinh`].
fn fasinh(self) -> Self {
num::Float::asinh(self)
}
/// Shorthand for [`num::Float::acosh`].
fn facosh(self) -> Self {
num::Float::acosh(self)
}
/// Shorthand for [`num::Float::atanh`].
fn fatanh(self) -> Self {
num::Float::atanh(self)
}
/// Shorthand for [`num::Float::log`].
fn flog(self, base: Self) -> Self {
num::Float::log(self, base)
}
/// Shorthand for [`num::Float::log2`].
fn flog2(self) -> Self {
num::Float::log2(self)
}
/// Shorthand for [`num::Float::log10`].
fn flog10(self) -> Self {
num::Float::log10(self)
}
/// Shorthand for [`num::Float::ln`].
fn fln(self) -> Self {
num::Float::ln(self)
}
/// Shorthand for [`num::Float::ln_1p`].
fn fln_1p(self) -> Self {
num::Float::ln_1p(self)
}
/// Shorthand for [`num::Float::exp`].
fn fexp(self) -> Self {
num::Float::exp(self)
}
/// Shorthand for [`num::Float::exp2`].
fn fexp2(self) -> Self {
num::Float::exp2(self)
}
/// Shorthand for [`num::Float::exp_m1`].
fn fexp_m1(self) -> Self {
num::Float::exp_m1(self)
}
/// Shorthand for [`num::Float::hypot`].
fn fhypot(self, other: Self) -> Self {
num::Float::hypot(self, other)
}
/// Shorthand for [`num::Float::recip`].
fn frecip(self) -> Self {
num::Float::recip(self)
}
/// Shorthand for [`num::Float::mul_add`].
fn fmul_add(self, a: Self, b: Self) -> Self {
num::Float::mul_add(self, a, b)
}
/// Shorthand for [`num::Float::floor`].
fn ffloor(self) -> Self {
num::Float::floor(self)
}
/// Shorthand for [`num::Float::ceil`].
fn fceil(self) -> Self {
num::Float::ceil(self)
}
/// Shorthand for [`num::Float::round`].
fn fround(self) -> Self {
num::Float::round(self)
}
/// Shorthand for [`num::Float::trunc`].
fn ftrunc(self) -> Self {
num::Float::trunc(self)
}
/// Shorthand for [`num::Float::fract`].
fn ffract(self) -> Self {
num::Float::fract(self)
}
/// Shorthand for [`num::Float::min`].
fn fmin(self, other: Self) -> Self {
num::Float::min(self, other)
}
/// Shorthand for [`num::Float::max`].
fn fmax(self, other: Self) -> Self {
num::Float::max(self, other)
}
}
impl Field for f64 {
const MIN_POSITIVE: Self = Self::MIN_POSITIVE;
const MAX: Self = Self::MAX;
const MIN: Self = Self::MIN;
const INFINITY: Self = Self::INFINITY;
const NEG_INFINITY: Self = Self::NEG_INFINITY;
const ZERO: Self = 0.0;
const ONE: Self = 1.0;
const TWO: Self = 2.0;
const THREE: Self = 3.0;
const FOUR: Self = 4.0;
const FIVE: Self = 5.0;
const SIX: Self = 6.0;
const SEVEN: Self = 7.0;
const EIGHT: Self = 8.0;
const NINE: Self = 9.0;
const TEN: Self = 10.0;
fn convert_f64(x: f64) -> Self {
x
}
fn convert_f32(x: f32) -> Self {
x as Self
}
fn convert_usize(x: usize) -> Self {
x as Self
}
fn convert_isize(x: isize) -> Self {
x as Self
}
fn convert_u32(x: u32) -> Self {
x as Self
}
}
impl Field for f32 {
const MIN_POSITIVE: Self = Self::MIN_POSITIVE;
const MAX: Self = Self::MAX;
const MIN: Self = Self::MIN;
const INFINITY: Self = Self::INFINITY;
const NEG_INFINITY: Self = Self::NEG_INFINITY;
const ZERO: Self = 0.0;
const ONE: Self = 1.0;
const TWO: Self = 2.0;
const THREE: Self = 3.0;
const FOUR: Self = 4.0;
const FIVE: Self = 5.0;
const SIX: Self = 6.0;
const SEVEN: Self = 7.0;
const EIGHT: Self = 8.0;
const NINE: Self = 9.0;
const TEN: Self = 10.0;
fn convert_f64(x: f64) -> Self {
x as Self
}
fn convert_f32(x: f32) -> Self {
x
}
fn convert_usize(x: usize) -> Self {
x as Self
}
fn convert_isize(x: isize) -> Self {
x as Self
}
fn convert_u32(x: u32) -> Self {
x as Self
}
}
#[macro_export]
/// Convenience macro for boxing up coherent sum terms into a [`Model`](`crate::amplitude::Model`).
macro_rules! model {
($($term:expr),+ $(,)?) => {
Model::new(&[$(Box::new($term),)+])
};
}
pub mod errors {
//! This module contains an all-encompassing error enum that almost every crate method will
//! produce if it returns a Result.
use pyo3::{exceptions::PyException, PyErr};
use thiserror::Error;
/// The main [`Error`] structure for `rustitude_core`. All errors internal to the crate should
/// eventually pass through here, since it provides a single-location interface for `PyO3`
/// errors.
#[derive(Debug, Error)]
pub enum RustitudeError {
#[allow(missing_docs)]
#[error(transparent)]
IOError(#[from] std::io::Error),
#[allow(missing_docs)]
#[error(transparent)]
ParquetError(#[from] parquet::errors::ParquetError),
#[allow(missing_docs)]
#[error("Oxyroot: {0}")]
OxyrootError(String),
#[allow(missing_docs)]
#[error(transparent)]
ThreadPoolBuildError(#[from] rayon::ThreadPoolBuildError),
#[allow(missing_docs)]
#[error("Could not cast value from {0} (type in file) to {1} (required type)")]
DatasetReadError(String, String),
#[allow(missing_docs)]
#[error("Parameter not found: {0}")]
ParameterNotFoundError(String),
#[allow(missing_docs)]
#[error("Amplitude not found: {0}")]
AmplitudeNotFoundError(String),
#[allow(missing_docs)]
#[error("Invalid parameter value: {0}")]
InvalidParameterValue(String),
#[allow(missing_docs)]
#[error("Evaluation error: {0}")]
EvaluationError(String),
#[allow(missing_docs)]
#[error("Python error: {0}")]
PythonError(String),
}
impl From<RustitudeError> for PyErr {
fn from(err: RustitudeError) -> Self {
PyException::new_err(err.to_string())
}
}
impl From<PyErr> for RustitudeError {
fn from(err: PyErr) -> Self {
Self::PythonError(err.to_string())
}
}
}
pub mod utils {
//! This module holds some convenience methods for writing nice test functions for Amplitudes.
use crate::prelude::*;
/// Generate a test event for the reaction $`\gamma p \to K_S K_S p`$ with 64-bit precision.
pub fn generate_test_event_f64() -> Event<f64> {
Event {
index: 0,
weight: -0.48,
beam_p4: FourMomentum::new(8.747_921, 0.0, 0.0, 8.747_921),
recoil_p4: FourMomentum::new(1.040_902_7, 0.119_110_32, 0.373_947_23, 0.221_585_83),
daughter_p4s: vec![
FourMomentum::new(3.136_247_2, -0.111_774_68, 0.293_426_28, 3.080_557_3),
FourMomentum::new(5.509_043, -0.007_335_639, -0.667_373_54, 5.445_778),
],
eps: Vector3::from([0.385_109_57, 0.022_205_278, 0.0]),
}
}
/// Generate a test event for the reaction $`\gamma p \to K_S K_S p`$ with 32-bit precision.
pub fn generate_test_event_f32() -> Event<f32> {
Event {
index: 0,
weight: -0.48,
beam_p4: FourMomentum::new(8.747_921, 0.0, 0.0, 8.747_921),
recoil_p4: FourMomentum::new(1.040_902_7, 0.119_110_32, 0.373_947_23, 0.221_585_83),
daughter_p4s: vec![
FourMomentum::new(3.136_247_2, -0.111_774_68, 0.293_426_28, 3.080_557_3),
FourMomentum::new(5.509_043, -0.007_335_639, -0.667_373_54, 5.445_778),
],
eps: Vector3::from([0.385_109_57, 0.022_205_278, 0.0]),
}
}
/// Checks if two floating point numbers are essentially equal.
/// See [https://floating-point-gui.de/errors/comparison/](https://floating-point-gui.de/errors/comparison/).
pub fn is_close<F: Field>(a: F, b: F, epsilon: F) -> bool {
let abs_a = F::fabs(a);
let abs_b = F::fabs(b);
let diff = F::fabs(a - b);
if a == b {
true
} else if a == F::ZERO || b == F::ZERO || (abs_a + abs_b < F::MIN_POSITIVE) {
diff < (epsilon * F::MIN_POSITIVE)
} else {
diff / F::fmin(abs_a + abs_b, F::MAX) < epsilon
}
}
/// A macro to assert if two floating point numbers are essentially equal. Similar to [`approx`] crate.
#[macro_export]
macro_rules! assert_is_close {
($given:expr, $expected:expr, f64) => {
let abs_a = f64::abs($given);
let abs_b = f64::abs($expected);
let diff = f64::abs($given - $expected);
let abs_diff = diff / f64::min(abs_a + abs_b, f64::MAX);
match (&($given), &($expected)) {
(given, expected) => assert!(
$crate::utils::is_close(f64::from(*given), *expected, 1e-5),
"assert_is_close!({}, {})
a = {:?}
b = {:?}
|a - b| / (|a| + |b|) = {:?} > 1e-5
",
stringify!($given),
stringify!($expected),
given,
expected,
abs_diff
),
}
};
($given:expr, $expected:expr, f32) => {
let abs_a = f32::abs($given);
let abs_b = f32::abs($expected);
let diff = f32::abs($given - $expected);
let abs_diff = diff / f32::min(abs_a + abs_b, f32::MAX);
match (&($given), &($expected)) {
(given, expected) => assert!(
$crate::utils::is_close(f32::from(*given), *expected, 1e-5),
"assert_is_close!({}, {})
a = {:?}
b = {:?}
|a - b| / (|a| + |b|) = {:?} > 1e-5
",
stringify!($given),
stringify!($expected),
given,
expected,
abs_diff
),
}
};
($given:expr, $expected:expr, $eps:expr, f64) => {
let abs_a = f64::abs($given);
let abs_b = f64::abs($expected);
let diff = f64::abs($given - $expected);
let abs_diff = diff / f64::min(abs_a + abs_b, f64::MAX);
match (&($given), &($expected), &($eps)) {
(given, expected, eps) => assert!(
$crate::utils::is_close(*given, *expected, *eps),
"assert_is_close!({}, {}, {})
a = {:?}
b = {:?}
|a - b| / (|a| + |b|) = {:?} > {:?}
",
stringify!($given),
stringify!($expected),
stringify!($eps),
given,
expected,
abs_diff,
eps
),
}
};
($given:expr, $expected:expr, $eps:expr, f32) => {
let abs_a = f32::abs($given);
let abs_b = f32::abs($expected);
let diff = f32::abs($given - $expected);
let abs_diff = diff / f32::min(abs_a + abs_b, f32::MAX);
match (&($given), &($expected), &($eps)) {
(given, expected, eps) => assert!(
$crate::utils::is_close(*given, *expected, *eps),
"assert_is_close!({}, {}, {})
a = {:?}
b = {:?}
|a - b| / (|a| + |b|) = {:?} > {:?}
",
stringify!($given),
stringify!($expected),
stringify!($eps),
given,
expected,
abs_diff,
eps
),
}
};
}
}