1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
//! # Rustitude
//! ## Demystifying Amplitude Analysis with Rust and Python
//!
//! The `rustitude-core` crate aims to implement common amplitude analysis techniques in Rust with
//! bindings to Python. This crate does not include the Python bindings, see the [GitHub
//! repo](https://github.com/denehoffman/rustitude) for more information on the Python API.
//!
//! The three core principles of `rustitude-core` are:
//! 1. Parallelization over events is automatically handeled by a [`Manager`](crate::manager::Manager).
//! 2. Amplitudes are written to do as much work as possible ahead of time, and evaluations use
//! caching as much as possible automatically.
//! 3. Developers just need to implement the [`Node`](crate::amplitude::Node) trait to write a new
//! amplitude, everything else is handled by the crate.
//!
//! ## Table of Contents
//!
//! * [Dataset Structure](#dataset-structure)
//! * [Creating a New Amplitude](#creating-a-new-amplitude)
//! * [Combining Amplitudes into Models](#combining-amplitudes-into-models)
//! * [Managing Parameters](#managing-parameters)
//! * [Evaluating Likelihoods](#evaluating-likelihoods)
//!
//! # Dataset Structure
//!
//! A [`Dataset`](crate::dataset::Dataset) is essentially just a wrapper for a [`Vec`] of
//! [`Event`](crate::dataset::Event)s. The current [`Event`](crate::dataset::Event) structure is as follows:
//!
//! ```ignore
//! pub struct Event {
//! pub index: usize, // Position of event within dataset
//! pub weight: f64, // Event weight
//! pub beam_p4: FourMomentum, // Beam four-momentum
//! pub recoil_p4: FourMomentum, // Recoil four-momentum
//! pub daughter_p4s: Vec<FourMomentum>, // Four-momenta of final state particles sans recoil
//! pub eps: Vector3<f64>, // Beam polarization vector
//! }
//! ```
//!
//! In the Rust API, we can create [`Dataset`](crate::dataset::Dataset)s from `ROOT` files as well as
//! `Parquet` files. `ROOT` file reading is done through [`oxyroot`] - This still has some issues,
//! and large files or files with user metadata might fail to load. The alternative `Parquet`
//! format can be obtained from a `ROOT` file by using a conversion script like the one provided
//! [here](https://github.com/denehoffman/rustitude/blob/main/bin/convert). By default, we expect
//! all of the [`Event`](crate::dataset::Event) fields to be mirrored as the following branches:
//!
//! | Branch Name | Data Type | Notes |
//! |---|---|---|
//! | `Weight` | Float32 | |
//! | `E_Beam` | Float32 | |
//! | `Px_Beam` | Float32 | |
//! | `Py_Beam` | Float32 | |
//! | `Pz_Beam` | Float32 | |
//! | `E_FinalState` | \[Float32\] | \[recoil, daughter #1, daughter #2, ...\] |
//! | `Px_FinalState` | \[Float32\] | \[recoil, daughter #1, daughter #2, ...\] |
//! | `Py_FinalState` | \[Float32\] | \[recoil, daughter #1, daughter #2, ...\] |
//! | `Pz_FinalState` | \[Float32\] | \[recoil, daughter #1, daughter #2, ...\] |
//! | `EPS` | \[Float32\] | \[$`P_\gamma \cos(\Phi)`$, $`P_\gamma \sin(\Phi)`$, $`0.0`$\] for linear polarization with magnitude $`P_\gamma`$ and angle $`\Phi`$ |
//!
//! A `Parquet` file with these columns can be loaded with the following:
//! ```ignore
//! use rustitude_core::prelude::*;
//! fn main() -> Result<(), RustitudeError> {
//! let dataset = Dataset::from_parquet("path/to/file.parquet")?;
//! println!("{}", dataset.events()[0]); // print first event
//! }
//! ```
//!
//! Because the beam is often directed along the $`z`$-axis, there is an alternative way to store
//! the `EPS` vector without a new branch (for linear polarization. The $`x`$ and $`y`$ components
//! of `EPS` can be stored as `Px_Beam` and `Py_Beam` respectively, and the format can be loaded
//! using [`Dataset::from_parquet_eps_in_beam`](crate::dataset::Dataset::from_parquet_eps_in_beam).
//!
//! # Creating a New Amplitude
//!
//! To make a new amplitude, we will first create a new struct and then implement
//! [`Node`](crate::amplitude::Node). Let's start with a trivial example, an amplitude which returns a
//! complex scalar. This particular amplitude is already implemented as a convenience struct called
//! [`ComplexScalar`](crate::amplitude::ComplexScalar).
//!
//! ```ignore
//! use rustitude_core::prelude::*
//! struct ComplexScalar;
//! impl Node for ComplexScalar {
//! fn calculate(&self, parameters: &[f64], _event: &Event) -> Result<Complex64, RustitudeError> {
//! Ok(Complex64::new(parameters[0], parameters[1]))
//! }
//!
//! fn parameters(&self) -> Vec<String> {
//! vec!["real".to_string(), "imag".to_string()]
//! }
//! }
//! ```
//!
//! For a second example, we can look at the precalculation feature. Here's an Dalitz-like
//! amplitude for the $`\omega`$ particle:
//! ```ignore
//! use rayon::prelude::*;
//! use rustitude_core::prelude::*;
//!
//! #[derive(Default)]
//! pub struct OmegaDalitz {
//! dalitz_z: Vec<f64>,
//! dalitz_sin3theta: Vec<f64>,
//! lambda: Vec<f64>,
//! }
//!
//! impl Node for OmegaDalitz {
//! fn precalculate(&mut self, dataset: &Dataset) -> Result<(), RustitudeError> {
//! (self.dalitz_z, (self.dalitz_sin3theta, self.lambda)) = dataset
//! .events
//! .read()
//! .par_iter()
//! .map(|event| {
//! let pi0 = event.daughter_p4s[0];
//! let pip = event.daughter_p4s[1];
//! let pim = event.daughter_p4s[2];
//! let omega = pi0 + pip + pim;
//!
//! let dalitz_s = (pip + pim).m2();
//! let dalitz_t = (pip + pi0).m2();
//! let dalitz_u = (pim + pi0).m2();
//!
//! let m3pi = (2.0 * pip.m()) + pi0.m();
//! let dalitz_d = 2.0 * omega.m() * (omega.m() - m3pi);
//! let dalitz_sc = (1.0 / 3.0) * (omega.m2() + pip.m2() + pim.m2() + pi0.m2());
//! let dalitz_x = f64::sqrt(3.0) * (dalitz_t - dalitz_u) / dalitz_d;
//! let dalitz_y = 3.0 * (dalitz_sc - dalitz_s) / dalitz_d;
//!
//! let dalitz_z = dalitz_x * dalitz_x + dalitz_y * dalitz_y;
//! let dalitz_sin3theta = f64::sin(3.0 * f64::asin(dalitz_y / f64::sqrt(dalitz_z)));
//!
//! let pip_omega = pip.boost_along(&omega);
//! let pim_omega = pim.boost_along(&omega);
//! let pi_cross = pip_omega.momentum().cross(&pim_omega.momentum());
//!
//! let lambda = (4.0 / 3.0) * f64::abs(pi_cross.dot(&pi_cross))
//! / ((1.0 / 9.0) * (omega.m2() - (2.0 * pip.m() + pi0.m()).powi(2)).powi(2));
//!
//! (dalitz_z, (dalitz_sin3theta, lambda))
//! })
//! .unzip();
//! Ok(())
//! }
//!
//! fn calculate(&self, parameters: &[f64], event: &Event) -> Result<Complex64, RustitudeError> {
//! let dalitz_z = self.dalitz_z[event.index];
//! let dalitz_sin3theta = self.dalitz_sin3theta[event.index];
//! let lambda = self.lambda[event.index];
//! let alpha = parameters[0];
//! let beta = parameters[1];
//! let gamma = parameters[2];
//! let delta = parameters[3];
//! Ok(f64::sqrt(f64::abs(
//! lambda
//! * (1.0
//! + 2.0 * alpha * dalitz_z
//! + 2.0 * beta * dalitz_z.powf(3.0 / 2.0) * dalitz_sin3theta
//! + 2.0 * gamma * dalitz_z.powi(2)
//! + 2.0 * delta * dalitz_z.powf(5.0 / 2.0) * dalitz_sin3theta),
//! ))
//! .into())
//! }
//!
//! fn parameters(&self) -> Vec<String> {
//! vec![
//! "alpha".to_string(),
//! "beta".to_string(),
//! "gamma".to_string(),
//! "delta".to_string(),
//! ]
//! }
//! }
//! ```
//! # Combining Amplitudes into Models
//! We can use several operations to modify and combine amplitudes. Since amplitudes yield complex
//! values, the following convenience methods are provided:
//! [`real`](`amplitude::AmpLike::real`), and [`imag`](`amplitude::AmpLike::imag`) give the real and
//! imaginary part of the amplitude, respectively. Additionally, amplitudes can be added and multiplied
//! together using operator overloading. All sums are interpreted as
//! [coherent sums](`crate::amplitude::CohSum`), and products with these coherent sums are
//! distributed. Incoherent sums are handled at the [`Model`](crate::amplitude::Model) level.
//!
//! To incoherently sum two [`Amplitude`](`amplitude::Amplitude`)s, say `amp1` and `amp2`, we would
//! first assume that we actually want the absolute square of the given term (or write our
//! amplitude as the square root of what we really want), and then include them both in our model:
//!
//! ```ignore
//! use rustitude_core::prelude::*;
//! // Define amp1/amp2: Amplitude here...
//! let model = Model::new(vec![amp1.as_cohsum(), amp2.as_cohsum()])
//! ```
//!
//! To reiterate, this would yield something like $`\left|\text{amp}_1\right|^2 + \left|\text{amp}_2\right|^2`$.
//!
//! The [`Scalar`](`crate::amplitude::Scalar`),
//! [`ComplexScalar`](`crate::amplitude::ComplexScalar`), and
//! [`PolarComplexScalar`](`crate::amplitude::PolarComplexScalar`) amplitudes all have convenience
//! methods, [`scalar`](`crate::amplitude::scalar`), [`cscalar`](`crate::amplitude::cscalar`), and
//! [`pcscalar`](`crate::amplitude::pcscalar`) respectively. We then wrap the final expression in a
//! [`Model`](crate::amplitude::Model) which can manage all of the
//! [`Parameter`](`crate::amplitude::Parameter`)s.
//!
//! ```ignore
//! use rustitude_core::prelude::*;
//!
//! #[derive(Default)]
//! pub struct OmegaDalitz { ... }
//! impl Node for OmegaDalitz { ... }
//!
//! let complex_term = cscalar("my complex scalar");
//! let omega_dalitz = amplitude!("omega dalitz", OmegaDalitz::default());
//! let term = (complex_term * omega_dalitz).norm_sqr();
//! term.print_tree();
//! // [ norm sqr ]
//! // ┗━[ * ]
//! // ┣━ !my complex scalar(real, imag)
//! // ┗━ !omega dalitz(alpha, beta, gamma, delta)
//! let model = Model::new(term);
//! ```
//!
//! # Managing Parameters
//!
//! Now that we have a model, we might want to constrain or fix parameters. Parameters are
//! identified solely by their name and the name of the amplitude they are associated with. This
//! means that two amplitudes with the same name will share parameters which also have the same
//! name. If we want to intentionally set one parameter in a particular amplitude equal to another,
//! we can use the [`Model::constrain`](crate::amplitude::Model::constrain). This will reduce the
//! number of free parameters in the fit, and will yield a
//! [`RustitudeError`](crate::errors::RustitudeError) if either of the parameters is not found.
//! Parameters can also be fixed and freed using [`Model::fix`](crate::amplitude::Model::fix) and
//! [`Model::free`](crate::amplitude::Model::free) respectively, and these methods are mirrored in
//! [`Manager`](crate::manager::Manager) and
//! [`ExtendedLogLikelihood`](crate::manager::ExtendedLogLikelihood) for convenience.
//!
//! # Evaluating Likelihoods
//!
//! If we wanted to obtain the negative log-likelihood for this particular amplitude, we need to
//! link our [`Model`](crate::amplitude::Model) to a [`Dataset`](crate::dataset::Dataset). This is done using a
//! [`Manager`](crate::manager::Manager). Finally, two [`Manager`](crate::manager::Manager)s may be combined into an
//! [`ExtendedLogLikelihood`](crate::manager::ExtendedLogLikelihood). Both of these manager-like structs have an
//! `evaluate` method that takes some parameters as a `&[f64]` (along with a [`usize`] for the
//! number of threads to use for the [`ExtendedLogLikelihood`](crate::manager::ExtendedLogLikelihood)).
//!
//! ```ignore
//! use rustitude_core::prelude::*;
//!
//! #[derive(Default)]
//! pub struct OmegaDalitz { ... }
//! impl Node for OmegaDalitz { ... }
//!
//! let complex_term = cscalar("my complex scalar");
//! let omega_dalitz = amplitude!("omega dalitz", OmegaDalitz::default());
//! let term = (complex_term * omega_dalitz).norm_sqr();
//! let model = Model::new(term);
//! let dataset = Dataset::from_parquet("path/to/file.parquet").unwrap();
//! let dataset_mc = Dataset::from_parquet("path/to/monte_carlo_file.parquet").unwrap();
//! let nll = ExtendedLogLikelihood::new(
//! Manager::new(&model, &dataset),
//! Manager::new(&model, &dataset_mc)
//! );
//! println!("NLL on 4 threads: {}", nll.evaluate(&nll.get_initial(), 4));
//! ```
#![warn(
clippy::nursery,
clippy::unwrap_used,
clippy::expect_used,
clippy::doc_markdown,
clippy::doc_link_with_quotes,
clippy::missing_safety_doc,
clippy::missing_panics_doc,
clippy::missing_errors_doc,
clippy::perf,
clippy::style,
missing_docs
)]
#![cfg_attr(feature = "simd", feature(portable_simd))]
pub mod amplitude;
pub mod dataset;
pub mod four_momentum;
pub mod manager;
/// Recommended namespace for use and development.
pub mod prelude {
pub use crate::amplitude::{
cscalar, pcscalar, scalar, AmpLike, Amplitude, CohSum, Imag, Model, Node, Parameter,
Piecewise, Product, Real,
};
pub use crate::dataset::{Dataset, Event};
pub use crate::errors::RustitudeError;
pub use crate::four_momentum::FourMomentum;
pub use crate::manager::{ExtendedLogLikelihood, Manager};
pub use num_complex::Complex64;
}
pub mod errors {
//!
use pyo3::{exceptions::PyException, PyErr};
use thiserror::Error;
/// The main [`Error`] structure for `rustitude_core`. All errors internal to the crate should
/// eventually pass through here, since it provides a single-location interface for `PyO3`
/// errors.
#[derive(Debug, Error)]
pub enum RustitudeError {
#[allow(missing_docs)]
#[error(transparent)]
IOError(#[from] std::io::Error),
#[allow(missing_docs)]
#[error(transparent)]
ParquetError(#[from] parquet::errors::ParquetError),
#[allow(missing_docs)]
#[error("Oxyroot: {0}")]
OxyrootError(String),
#[allow(missing_docs)]
#[error(transparent)]
ThreadPoolBuildError(#[from] rayon::ThreadPoolBuildError),
#[allow(missing_docs)]
#[error("Could not cast value from {0} (type in file) to {1} (required type)")]
DatasetReadError(String, String),
#[allow(missing_docs)]
#[error("Parameter not found: {0}")]
ParameterNotFoundError(String),
#[allow(missing_docs)]
#[error("Amplitude not found: {0}")]
AmplitudeNotFoundError(String),
#[allow(missing_docs)]
#[error("invalid parameter value")]
InvalidParameterValue(String),
#[allow(missing_docs)]
#[error("evaluation error")]
EvaluationError(String),
}
impl From<RustitudeError> for PyErr {
fn from(err: RustitudeError) -> Self {
PyException::new_err(err.to_string())
}
}
}
/// Creates a new thread pool.
///
/// This method uses [`rayon`] to create a thread pool with a given number of threads.
///
/// Arguments:
/// * `num_threads`: Number of threads to use in the pool
///
/// # Errors
///
/// Will yield a [`errors::RustitudeError`] which forwards a [`rayon::ThreadPoolBuildError`] if
/// there is any issue creating the thread pool.
pub fn create_pool(num_threads: usize) -> Result<rayon::ThreadPool, errors::RustitudeError> {
Ok(rayon::ThreadPoolBuilder::new()
.num_threads(num_threads)
.build()?)
}