1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
//! The amplitude module contains structs and methods for defining and manipulating [`Amplitude`]s
//! and [`Model`]s
//!
//! To create a new [`Amplitude`] in Rust, we simply need to implement the [`Node`] trait on a
//! struct. You can provide a convenience method for creating a new implementation of your
//! [`Amplitude`], or you can use the [`crate::amplitude!`] macro as a shortcut.
//!
//! Amplitudes are typically defined first, and then [`Model`]s are built by multiplying and
//! operating on [`Amplitude`]s as [`AmpOp`]s. These [`AmpOp`]s are summed into [`CohSum`]s
//! (coherent sums), and these are then summed by a [`Model`].
//!
//! We can then use [`Manager`](crate::manager::Manager)-like structs to handle computataion
//! over [`Dataset`]s.
use itertools::{iproduct, Itertools};
use nalgebra::ComplexField;
use num::complex::Complex64;
use parking_lot::RwLock;
use rayon::prelude::*;
use std::{
collections::HashSet,
fmt::{Debug, Display},
ops::{Add, Mul},
sync::Arc,
};
use crate::{
dataset::{Dataset, Event},
errors::RustitudeError,
};
/// A single parameter within an [`Amplitude`].
#[derive(Clone)]
pub struct Parameter {
/// Name of the parent [`Amplitude`] containing this parameter.
pub amplitude: String,
/// Name of the parameter.
pub name: String,
/// Index of the parameter with respect to the [`Model`]. This will be [`Option::None`] if
/// the parameter is fixed.
pub index: Option<usize>,
/// A separate index for fixed parameters to ensure they stay constrained properly if freed.
/// This will be [`Option::None`] if the parameter is free in the [`Model`].
pub fixed_index: Option<usize>,
/// The initial value the parameter takes, or alternatively the value of the parameter if it is
/// fixed in the fit.
pub initial: f64,
/// Bounds for the given parameter (defaults to +/- infinity). This is mostly optional and
/// isn't used in any Rust code asside from being able to get and set it.
pub bounds: (f64, f64),
}
impl Parameter {
/// Creates a new [`Parameter`] within an [`Amplitude`] using the name of the [`Amplitude`],
/// the name of the [`Parameter`], and the index of the parameter within the [`Model`].
///
/// By default, new [`Parameter`]s are free, have an initial value of `0.0`, and their bounds
/// are set to `(f64::NEG_INFINITY, f64::INFINITY)`.
pub fn new(amplitude: &str, name: &str, index: usize) -> Self {
Self {
amplitude: amplitude.to_string(),
name: name.to_string(),
index: Some(index),
fixed_index: None,
initial: 0.0,
bounds: (f64::NEG_INFINITY, f64::INFINITY),
}
}
}
impl Debug for Parameter {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if self.index.is_none() {
write!(
f,
"< {} >[ {} (*{}*) ]({:?})({:?})",
self.amplitude, self.name, self.initial, self.index, self.fixed_index,
)
} else {
write!(
f,
"< {} >[ {} ({}) ]({:?})({:?})",
self.amplitude, self.name, self.initial, self.index, self.fixed_index,
)
}
}
}
impl Display for Parameter {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if self.index.is_none() {
write!(
f,
"<{}>[ {} (*{}*) ]",
self.amplitude, self.name, self.initial
)
} else {
write!(
f,
"<{}>[ {} ({}) ]",
self.amplitude, self.name, self.initial
)
}
}
}
/// Creates a wrapped [`AmpOp`] which can be registered by a [`crate::amplitude::Model`].
///
/// This macro is a convenience method which takes a name and a [`Node`] and generates a new [`AmpOp`].
#[macro_export]
macro_rules! amplitude {
($name:expr, $node:expr) => {{
Amplitude::new($name, $node).into()
}};
}
/// A trait which contains all the required methods for a functioning [`Amplitude`].
///
/// The [`Node`] trait represents any mathematical structure which takes in some parameters and some
/// [`Event`] data and computes a [`Complex64`] for each [`Event`]. This is the fundamental
/// building block of all analyses built with Rustitude. Nodes are intended to be optimized at the
/// user level, so they should be implemented on structs which can store some precalculated data.
///
/// # Examples:
///
/// A [`Node`] for calculating spherical harmonics:
///
/// ```
/// use rustitude_core::prelude::*;
///
/// use nalgebra::{SMatrix, SVector};
/// use num_complex::Complex64;
/// use rayon::prelude::*;
/// use sphrs::SHEval;
/// use sphrs::{ComplexSH, Coordinates};
///
/// #[derive(Clone, Copy, Default)]
/// #[rustfmt::skip]
/// enum Wave {
/// #[default]
/// S,
/// S0,
/// Pn1, P0, P1, P,
/// Dn2, Dn1, D0, D1, D2, D,
/// Fn3, Fn2, Fn1, F0, F1, F2, F3, F,
/// }
///
/// #[rustfmt::skip]
/// impl Wave {
/// fn l(&self) -> i64 {
/// match self {
/// Self::S0 | Self::S => 0,
/// Self::Pn1 | Self::P0 | Self::P1 | Self::P => 1,
/// Self::Dn2 | Self::Dn1 | Self::D0 | Self::D1 | Self::D2 | Self::D => 2,
/// Self::Fn3 | Self::Fn2 | Self::Fn1 | Self::F0 | Self::F1 | Self::F2 | Self::F3 | Self::F => 3,
/// }
/// }
/// fn m(&self) -> i64 {
/// match self {
/// Self::S | Self::P | Self::D | Self::F => 0,
/// Self::S0 | Self::P0 | Self::D0 | Self::F0 => 0,
/// Self::Pn1 | Self::Dn1 | Self::Fn1 => -1,
/// Self::P1 | Self::D1 | Self::F1 => 1,
/// Self::Dn2 | Self::Fn2 => -2,
/// Self::D2 | Self::F2 => 2,
/// Self::Fn3 => -3,
/// Self::F3 => 3,
/// }
/// }
/// }
///
/// struct Ylm(Wave, Vec<Complex64>);
/// impl Ylm {
/// fn new(wave: Wave) -> Self {
/// Self(wave, Vec::default())
/// }
/// }
/// impl Node for Ylm {
/// fn parameters(&self) -> Vec<String> { vec![] }
/// fn precalculate(&mut self, dataset: &Dataset) -> Result<(), RustitudeError> {
/// self.1 = dataset.events.read()
/// .par_iter()
/// .map(|event| {
/// let resonance = event.daughter_p4s[0] + event.daughter_p4s[1];
/// let p1 = event.daughter_p4s[0];
/// let recoil_res = event.recoil_p4.boost_along(&resonance); // Boost to helicity frame
/// let p1_res = p1.boost_along(&resonance);
/// let z = -1.0 * recoil_res.momentum().normalize();
/// let y = event
/// .beam_p4
/// .momentum()
/// .cross(&(-1.0 * event.recoil_p4.momentum()));
/// let x = y.cross(&z);
/// let p1_vec = p1_res.momentum();
/// let p = Coordinates::cartesian(p1_vec.dot(&x), p1_vec.dot(&y), p1_vec.dot(&z));
/// ComplexSH::Spherical.eval(self.0.l(), self.0.m(), &p)
/// })
/// .collect();
/// Ok(())
/// }
///
/// fn calculate(&self, _parameters: &[f64], event: &Event) -> Result<Complex64, RustitudeError> {
/// Ok(self.1[event.index])
/// }
/// }
/// ```
///
/// A [`Node`] which computes a single complex scalar entirely determined by input parameters:
///
/// ```
/// use rustitude_core::prelude::*;
/// struct ComplexScalar;
/// impl Node for ComplexScalar {
/// fn calculate(&self, parameters: &[f64], _event: &Event) -> Result<Complex64, RustitudeError> {
/// Ok(Complex64::new(parameters[0], parameters[1]))
/// }
///
/// fn parameters(&self) -> Vec<String> {
/// vec!["real".to_string(), "imag".to_string()]
/// }
/// }
/// ```
pub trait Node: Sync + Send {
/// A method that is run once and stores some precalculated values given a [`Dataset`] input.
///
/// This method is intended to run expensive calculations which don't actually depend on the
/// parameters. For instance, to calculate a spherical harmonic, we don't actually need any
/// other information than what is contained in the [`Event`], so we can calculate a spherical
/// harmonic for every event once and then retrieve the data in the [`Node::calculate`] method.
///
/// # Errors
///
/// This function should be written to return a [`RustitudeError`] if any part of the
/// calculation fails.
fn precalculate(&mut self, _dataset: &Dataset) -> Result<(), RustitudeError> {
Ok(())
}
/// A method which runs every time the amplitude is evaluated and produces a [`Complex64`].
///
/// Because this method is run on every evaluation, it should be as lean as possible.
/// Additionally, you should avoid [`rayon`]'s parallel loops inside this method since we
/// already parallelize over the [`Dataset`]. This method expects a single [`Event`] as well as
/// a slice of [`f64`]s. This slice is guaranteed to have the same length and order as
/// specified in the [`Node::parameters`] method, or it will be empty if that method returns
/// [`None`].
///
/// # Errors
///
/// This function should be written to return a [`RustitudeError`] if any part of the
/// calculation fails.
fn calculate(&self, parameters: &[f64], event: &Event) -> Result<Complex64, RustitudeError>;
/// A method which specifies the number and order of parameters used by the [`Node`].
///
/// This method tells the [`crate::manager::Manager`] how to assign its input [`Vec`] of parameter values to
/// each [`Node`]. If this method returns [`None`], it is implied that the [`Node`] takes no
/// parameters as input. Otherwise, the parameter names should be listed in the same order they
/// are expected to be given as input to the [`Node::calculate`] method.
fn parameters(&self) -> Vec<String> {
vec![]
}
}
/// An enum for storing individual [`Amplitude`]s as well as products of [`AmpOp`]s or the real or
/// imaginary part of a single [`AmpOp`]. Sums of [`AmpOp`]s are handeled by the [`CohSum`] struct.
///
/// These structs follow some rules for addition and multiplication:
///
/// > `AmpOp + AmpOp = CohSum`
/// >
/// > `AmpOp + CohSum = CohSum` (appending)
/// >
/// > `CohSum + CohSum = CohSum` (concatenating)
///
/// > `AmpOp * AmpOp = AmpOp`
/// >
/// > `AmpOp * CohSum = CohSum` (`AmpOp` is distributed over terms of `CohSum`)
/// >
/// > `CohSum * CohSum = UNDEFINED`
///
/// This format should be able to handle any generalized intensity equation based on amplitude
/// nodes. For instance, if an incoherent sum is needed, two separate [`CohSum`]s can be created
/// and input as terns in the same [`Model`], since the results are summed normally there.
#[derive(Clone)]
pub enum AmpOp {
/// An [`Amplitude`] defined by the user.
Amplitude(Amplitude),
/// The product of a set of [`AmpOp`]s.
Product(Vec<AmpOp>),
/// The real part of an [`AmpOp`].
Real(Box<AmpOp>),
/// The imag part of an [`AmpOp`].
Imag(Box<AmpOp>),
}
impl Debug for AmpOp {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Amplitude(amp) => writeln!(f, "{:?}", amp),
Self::Product(ops) => {
write!(f, "Prod [ ")?;
for op in ops {
write!(f, "{:?} ", op)?;
}
write!(f, "]")
}
Self::Real(op) => write!(f, "Re[{:?}]", op),
Self::Imag(op) => write!(f, "Im[{:?}]", op),
}
}
}
impl Display for AmpOp {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Amplitude(amp) => writeln!(f, "{}", amp),
Self::Product(ops) => {
write!(f, "Prod [ ")?;
for op in ops {
write!(f, "{} ", op)?;
}
write!(f, "]")
}
Self::Real(op) => write!(f, "Re[{:?}]", op),
Self::Imag(op) => write!(f, "Im[{:?}]", op),
}
}
}
impl AmpOp {
/// Pretty prints a tree diagram to show the node structure of the [`AmpOp`].
pub fn print_tree(&self) {
self._print_tree(vec![]);
}
fn _print_indent(bits: &[bool]) {
bits.iter()
.for_each(|b| if *b { print!(" ┃ ") } else { print!(" ") });
}
fn _print_intermediate() {
print!(" ┣━");
}
fn _print_end() {
print!(" ┗━");
}
fn _print_tree(&self, mut bits: Vec<bool>) {
match self {
Self::Amplitude(amp) => {
if amp.parameters().len() > 7 {
println!(
" {}{}({},...)",
if amp.active { "!" } else { "" },
amp.name,
amp.parameters()[0..7].join(", ")
);
} else {
println!(
" {}{}({})",
if amp.active { "!" } else { "" },
amp.name,
amp.parameters().join(", ")
);
}
}
Self::Product(ops) => {
println!("[ * ]");
for (i, op) in ops.iter().enumerate() {
Self::_print_indent(&bits);
if i == ops.len() - 1 {
Self::_print_end();
bits.push(false);
} else {
Self::_print_intermediate();
bits.push(true);
}
op._print_tree(bits.clone());
bits.pop();
}
}
Self::Real(op) => {
println!("[ real ]");
Self::_print_indent(&bits);
Self::_print_end();
bits.push(false);
op._print_tree(bits.clone());
bits.pop();
}
Self::Imag(op) => {
println!("[ imag ]");
Self::_print_indent(&bits);
Self::_print_end();
bits.push(false);
op._print_tree(bits.clone());
bits.pop();
}
}
}
/// Walks through an [`AmpOp`] and collects all the contained [`Amplitude`]s recursively.
pub fn walk(&self) -> Vec<Amplitude> {
match self {
Self::Amplitude(amp) => vec![amp.clone()],
Self::Product(ops) => ops.iter().flat_map(|op| op.walk()).collect(),
Self::Real(op) => op.walk(),
Self::Imag(op) => op.walk(),
}
}
/// Walks through an [`AmpOp`] and collects all the contained [`Amplitude`]s recursively. This
/// method gives mutable access to said [`Amplitude`]s.
pub fn walk_mut(&mut self) -> Vec<&mut Amplitude> {
match self {
Self::Amplitude(amp) => vec![amp],
Self::Product(ops) => ops.iter_mut().flat_map(|op| op.walk_mut()).collect(),
Self::Real(op) => op.walk_mut(),
Self::Imag(op) => op.walk_mut(),
}
}
/// Shortcut for computation using a cache of precomputed values. This method will return
/// [`None`] if the cache value at the corresponding [`Amplitude`]'s
/// [`Amplitude::cache_position`] is also [`None`], otherwise it just returns the corresponding
/// cached value. Other branches of the enum will perform various operations, such as getting
/// the product, real part, or imaginary part, and these will also have [`None`] values passed
/// through.
pub fn compute(&self, cache: &[Option<Complex64>]) -> Option<Complex64> {
match self {
Self::Amplitude(amp) => cache[amp.cache_position],
Self::Product(ops) => Some(ops.iter().filter_map(|op| op.compute(cache)).product()),
Self::Real(op) => op.compute(cache).map(|r| r.re.into()),
Self::Imag(op) => op.compute(cache).map(|r| r.im.into()),
}
}
/// Converts an [`AmpOp`] into a [`AmpOp::Real`] containing that [`AmpOp`].
pub fn real(&self) -> Self {
Self::Real(Box::new(self.clone()))
}
/// Converts an [`AmpOp`] into a [`AmpOp::Imag`] containing that [`AmpOp`].
pub fn imag(&self) -> Self {
Self::Imag(Box::new(self.clone()))
}
}
impl Add for AmpOp {
type Output = CohSum;
fn add(self, rhs: Self) -> Self::Output {
CohSum(vec![self, rhs])
}
}
impl Add<AmpOp> for &AmpOp {
type Output = <AmpOp as Add>::Output;
fn add(self, rhs: AmpOp) -> Self::Output {
AmpOp::add(self.clone(), rhs)
}
}
impl Add<&Self> for AmpOp {
type Output = <Self as Add>::Output;
fn add(self, rhs: &Self) -> Self::Output {
Self::add(self, rhs.clone())
}
}
impl Add for &AmpOp {
type Output = <AmpOp as Add>::Output;
fn add(self, rhs: Self) -> Self::Output {
AmpOp::add(self.clone(), rhs.clone())
}
}
impl Add<CohSum> for AmpOp {
type Output = CohSum;
fn add(self, rhs: CohSum) -> Self::Output {
CohSum([vec![self], rhs.0].concat())
}
}
impl Add<AmpOp> for CohSum {
type Output = Self;
fn add(self, rhs: AmpOp) -> Self::Output {
Self([self.0, vec![rhs]].concat())
}
}
impl Add<Self> for CohSum {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Self([self.0, rhs.0].concat())
}
}
impl Mul for AmpOp {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
match (self.clone(), rhs.clone()) {
(Self::Product(ops_l), Self::Product(ops_r)) => Self::Product([ops_l, ops_r].concat()),
(Self::Product(ops), _) => {
let mut sum_ops = ops;
sum_ops.push(rhs);
Self::Product(sum_ops)
}
(_, Self::Product(ops)) => {
let mut sum_ops = ops;
sum_ops.push(self);
Self::Product(sum_ops)
}
(_, _) => Self::Product(vec![self, rhs]),
}
}
}
impl Mul<AmpOp> for &AmpOp {
type Output = <AmpOp as Mul>::Output;
fn mul(self, rhs: AmpOp) -> Self::Output {
AmpOp::mul(self.clone(), rhs)
}
}
impl Mul<&Self> for AmpOp {
type Output = <Self as Mul>::Output;
fn mul(self, rhs: &Self) -> Self::Output {
Self::mul(self, rhs.clone())
}
}
impl Mul for &AmpOp {
type Output = <AmpOp as Mul>::Output;
fn mul(self, rhs: Self) -> Self::Output {
AmpOp::mul(self.clone(), rhs.clone())
}
}
impl Mul<CohSum> for AmpOp {
type Output = CohSum;
fn mul(self, rhs: CohSum) -> Self::Output {
CohSum(rhs.0.iter().map(|term| self.clone() * term).collect())
}
}
impl Mul<AmpOp> for CohSum {
type Output = Self;
fn mul(self, rhs: AmpOp) -> Self::Output {
Self(self.0.iter().map(|term| term * rhs.clone()).collect())
}
}
impl From<AmpOp> for CohSum {
fn from(op: AmpOp) -> Self {
Self(vec![op])
}
}
/// A struct which stores a named [`Node`].
///
/// The [`Amplitude`] struct turns a [`Node`] trait into a concrete type and also stores a name
/// associated with the [`Node`]. This allows us to distinguish multiple uses of the same [`Node`]
/// in an analysis, and makes each [`Node`]'s parameters unique.
///
/// This is mostly used interally as an intermediate step to an [`AmpOp`].
#[derive(Clone)]
pub struct Amplitude {
/// A name which uniquely identifies an [`Amplitude`] within a sum and group.
pub name: String,
/// A [`Node`] which contains all of the operations needed to compute a [`Complex64`] from an
/// [`Event`] in a [`Dataset`], a [`Vec<f64>`] of parameter values, and possibly some
/// precomputed values.
pub node: Arc<RwLock<Box<dyn Node>>>,
/// Indicates whether the amplitude should be included in calculations or skipped.
pub active: bool,
/// Indicates the reserved position in the cache for shortcutting computation with a
/// precomputed cache.
pub cache_position: usize,
/// Indicates the position in the final parameter vector that coincides with the starting index
/// for parameters in this [`Amplitude`]
pub parameter_index_start: usize,
}
impl Debug for Amplitude {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Amplitude")
.field("name", &self.name)
.field("active", &self.active)
.field("cache_position", &self.cache_position)
.field("parameter_index_start", &self.parameter_index_start)
.finish()
}
}
impl Display for Amplitude {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if self.active {
write!(f, "{}", self.name)
} else {
write!(f, "# {} #", self.name)
}
}
}
impl From<Amplitude> for AmpOp {
fn from(amp: Amplitude) -> Self {
Self::Amplitude(amp)
}
}
impl Amplitude {
/// Creates a new [`Amplitude`] from a name and a [`Node`]-implementing struct.
pub fn new(name: &str, node: impl Node + 'static) -> Self {
Self {
name: name.to_string(),
node: Arc::new(RwLock::new(Box::new(node))),
active: true,
cache_position: 0,
parameter_index_start: 0,
}
}
/// Set the [`Amplitude::cache_position`] and [`Amplitude::parameter_index_start`] and runs
/// [`Amplitude::precalculate`] over the given [`Dataset`].
///
/// # Errors
/// This function will raise a [`RustitudeError`] if the precalculation step fails.
pub fn register(
&mut self,
cache_position: usize,
parameter_index_start: usize,
dataset: &Dataset,
) -> Result<(), RustitudeError> {
self.cache_position = cache_position;
self.parameter_index_start = parameter_index_start;
self.precalculate(dataset)
}
}
impl Node for Amplitude {
fn precalculate(&mut self, dataset: &Dataset) -> Result<(), RustitudeError> {
self.node.write().precalculate(dataset)
}
fn calculate(&self, parameters: &[f64], event: &Event) -> Result<Complex64, RustitudeError> {
self.node.read().calculate(
¶meters
[self.parameter_index_start..self.parameter_index_start + self.parameters().len()],
event,
)
}
fn parameters(&self) -> Vec<String> {
self.node.read().parameters()
}
}
/// Struct to hold a coherent sum of [`AmpOp`]s
#[derive(Clone)]
pub struct CohSum(Vec<AmpOp>);
impl Debug for CohSum {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Sum [ ")?;
for op in &self.0 {
write!(f, "{:?} ", op)?;
}
write!(f, "]")
}
}
impl CohSum {
/// Create a new [`CohSum`] from a [`Vec`] of terms ([`AmpOp`]s).
pub fn new(terms: Vec<AmpOp>) -> Self {
Self(terms)
}
/// Pretty prints a tree diagram to show the node structure of the [`CohSum`].
pub fn print_tree(&self) {
let bits = vec![true];
println!("[ CohSum ]");
for term in self.0.iter() {
term._print_tree(bits.clone())
}
}
/// Function which returns a sum of all cross terms inside a coherent sum.
///
/// Take the following coherent sum, where $`\vec{p}`$ are input parameters $`e`$ is an
/// event, and $`f_i`$ is the $`i`$th term in the sum:
///
/// ```math
/// \left| \sum_{i\in\text{terms}} f_i(\vec{p}, e) \right|^2
/// ```
///
/// This function will then return
///
/// ```math
/// \sum_{i\in\text{terms}} \sum_{j\in\text{terms}} f_i(\vec{p}, e) f_j^*(\vec{p}, e)
/// ```
///
/// This should be used to compute normalization integrals. Note that if on of the terms is
/// [`None`], this function will not add any products which contain that term. This can be used
/// to turn terms on and off.
pub fn norm_int(&self, cache: &[Option<Complex64>]) -> Option<f64> {
let results = self.0.iter().map(|op| op.compute(cache));
iproduct!(results.clone(), results)
.map(|terms| match terms {
(None, None) | (None, Some(_)) | (Some(_), None) => None,
(Some(a), Some(b)) => Some(a * b.conjugate()),
})
.sum::<Option<Complex64>>()
.map(|val| val.re)
}
/// Shortcut for computation using a cache of precomputed values. This method will return
/// [`None`] if the cache value at the corresponding [`Amplitude`]'s
/// [`Amplitude::cache_position`] is also [`None`], otherwise it just returns the corresponding
/// cached value. The computation is run across the [`CohSum`]'s terms, and the absolute square
/// of the result is returned (coherent sum).
pub fn compute(&self, cache: &[Option<Complex64>]) -> Option<f64> {
self.0
.iter()
.map(|ampop| ampop.compute(cache))
.sum::<Option<Complex64>>()
.map(|val| val.norm_sqr())
}
/// Walks through a [`CohSum`] and collects all the contained [`Amplitude`]s recursively.
pub fn walk(&self) -> Vec<Amplitude> {
self.0.iter().flat_map(|op| op.walk()).collect()
}
/// Walks through an [`CohSum`] and collects all the contained [`Amplitude`]s recursively. This
/// method gives mutable access to said [`Amplitude`]s.
pub fn walk_mut(&mut self) -> Vec<&mut Amplitude> {
self.0.iter_mut().flat_map(|op| op.walk_mut()).collect()
}
}
/// A model contains an API to interact with a group of [`CohSum`]s by managing their amplitudes
/// and parameters. Models are typically passed to [`Manager`](crate::manager::Manager)-like
/// struct.
#[derive(Debug, Clone)]
pub struct Model {
/// The set of coherent sums included in the [`Model`].
pub cohsums: Vec<CohSum>,
/// The unique amplitudes located within all [`CohSum`]s.
pub amplitudes: Vec<Amplitude>,
/// The unique parameters located within all [`CohSum`]s.
pub parameters: Vec<Parameter>,
}
impl Model {
/// Pretty-prints a tree diagram to show the node structure of the [`Model`].
pub fn print_tree(&self) {
for cohsum in &self.cohsums {
cohsum.print_tree()
}
}
/// Retrieves a copy of an [`Amplitude`] in the [`Model`] by name.
///
/// # Errors
/// This will throw a [`RustitudeError`] if the amplitude name is not located within the model.
pub fn get_amplitude(&self, amplitude_name: &str) -> Result<Amplitude, RustitudeError> {
self.amplitudes
.iter()
.find(|a: &&Amplitude| a.name == amplitude_name)
.ok_or_else(|| RustitudeError::AmplitudeNotFoundError(amplitude_name.to_string()))
.cloned()
}
/// Retrieves a copy of a [`Parameter`] in the [`Model`] by name.
///
/// # Errors
/// This will throw a [`RustitudeError`] if the parameter name is not located within the model
/// or if the amplitude name is not located within the model (this is checked first).
pub fn get_parameter(
&self,
amplitude_name: &str,
parameter_name: &str,
) -> Result<Parameter, RustitudeError> {
self.get_amplitude(amplitude_name)?;
self.parameters
.iter()
.find(|p: &&Parameter| p.amplitude == amplitude_name && p.name == parameter_name)
.ok_or_else(|| RustitudeError::ParameterNotFoundError(parameter_name.to_string()))
.cloned()
}
/// Pretty-prints all parameters in the model
pub fn print_parameters(&self) {
let any_fixed = if self.any_fixed() { 1 } else { 0 };
if self.any_fixed() {
println!(
"Fixed: {}",
self.group_by_index()[0]
.iter()
.map(|p| format!("{:?}", p))
.join(", ")
);
}
for (i, group) in self.group_by_index().iter().skip(any_fixed).enumerate() {
println!(
"{}: {}",
i,
group.iter().map(|p| format!("{:?}", p)).join(", ")
);
}
}
/// Constrains two [`Parameter`]s in the [`Model`] to be equal to each other when evaluated.
///
/// # Errors
///
/// This method will yield a [`RustitudeError`] if either of the parameters is not found by
/// name.
pub fn constrain(
&mut self,
amplitude_1: &str,
parameter_1: &str,
amplitude_2: &str,
parameter_2: &str,
) -> Result<(), RustitudeError> {
let p1 = self.get_parameter(amplitude_1, parameter_1)?;
let p2 = self.get_parameter(amplitude_2, parameter_2)?;
for par in self.parameters.iter_mut() {
// None < Some(0)
match p1.index.cmp(&p2.index) {
// p1 < p2
std::cmp::Ordering::Less => {
if par.index == p2.index {
par.index = p1.index;
par.initial = p1.initial;
par.fixed_index = p1.fixed_index;
}
}
std::cmp::Ordering::Equal => unimplemented!(),
// p2 < p1
std::cmp::Ordering::Greater => {
if par.index == p1.index {
par.index = p2.index;
par.initial = p2.initial;
par.fixed_index = p2.fixed_index;
}
}
}
}
self.reindex_parameters();
Ok(())
}
/// Fixes a [`Parameter`] in the [`Model`] to a given value.
///
/// This method technically sets the [`Parameter`] to be fixed and gives it an initial value of
/// the given value. This method also handles groups of constrained parameters.
///
/// # Errors
///
/// This method yields a [`RustitudeError`] if the parameter is not found by name.
pub fn fix(
&mut self,
amplitude: &str,
parameter: &str,
value: f64,
) -> Result<(), RustitudeError> {
let search_par = self.get_parameter(amplitude, parameter)?;
let fixed_index = self.get_min_fixed_index();
for par in self.parameters.iter_mut() {
if par.index == search_par.index {
par.index = None;
par.initial = value;
par.fixed_index = fixed_index;
}
}
self.reindex_parameters();
Ok(())
}
/// Frees a [`Parameter`] in the [`Model`].
///
/// This method does not modify the initial value of the parameter. This method
/// also handles groups of constrained parameters.
///
/// # Errors
///
/// This method yields a [`RustitudeError`] if the parameter is not found by name.
pub fn free(&mut self, amplitude: &str, parameter: &str) -> Result<(), RustitudeError> {
let search_par = self.get_parameter(amplitude, parameter)?;
let index = self.get_min_free_index();
for par in self.parameters.iter_mut() {
if par.fixed_index == search_par.fixed_index {
par.index = index;
par.fixed_index = None;
}
}
self.reindex_parameters();
Ok(())
}
/// Sets the bounds on a [`Parameter`] in the [`Model`].
///
/// # Errors
///
/// This method yields a [`RustitudeError`] if the parameter is not found by name.
pub fn set_bounds(
&mut self,
amplitude: &str,
parameter: &str,
bounds: (f64, f64),
) -> Result<(), RustitudeError> {
let search_par = self.get_parameter(amplitude, parameter)?;
if search_par.index.is_some() {
for par in self.parameters.iter_mut() {
if par.index == search_par.index {
par.bounds = bounds;
}
}
} else {
for par in self.parameters.iter_mut() {
if par.fixed_index == search_par.fixed_index {
par.bounds = bounds;
}
}
}
Ok(())
}
/// Sets the initial value of a [`Parameter`] in the [`Model`].
///
/// # Errors
///
/// This method yields a [`RustitudeError`] if the parameter is not found by name.
pub fn set_initial(
&mut self,
amplitude: &str,
parameter: &str,
initial: f64,
) -> Result<(), RustitudeError> {
let search_par = self.get_parameter(amplitude, parameter)?;
if search_par.index.is_some() {
for par in self.parameters.iter_mut() {
if par.index == search_par.index {
par.initial = initial;
}
}
} else {
for par in self.parameters.iter_mut() {
if par.fixed_index == search_par.fixed_index {
par.initial = initial;
}
}
}
Ok(())
}
/// Returns a list of bounds of free [`Parameter`]s in the [`Model`].
pub fn get_bounds(&self) -> Vec<(f64, f64)> {
let any_fixed = if self.any_fixed() { 1 } else { 0 };
self.group_by_index()
.iter()
.skip(any_fixed)
.filter_map(|group| group.first().map(|par| par.bounds))
.collect()
}
/// Returns a list of initial values of free [`Parameter`]s in the [`Model`].
pub fn get_initial(&self) -> Vec<f64> {
let any_fixed = if self.any_fixed() { 1 } else { 0 };
self.group_by_index()
.iter()
.skip(any_fixed)
.filter_map(|group| group.first().map(|par| par.initial))
.collect()
}
/// Returns the number of free [`Parameter`]s in the [`Model`].
pub fn get_n_free(&self) -> usize {
self.get_min_free_index().unwrap_or(0)
}
/// Activates an [`Amplitude`] in the [`Model`] by name.
pub fn activate(&mut self, amplitude: &str) {
self.amplitudes.iter_mut().for_each(|amp| {
if amp.name == amplitude {
amp.active = true
}
})
}
/// Deactivates an [`Amplitude`] in the [`Model`] by name.
pub fn deactivate(&mut self, amplitude: &str) {
self.amplitudes.iter_mut().for_each(|amp| {
if amp.name == amplitude {
amp.active = false
}
})
}
/// Creates a new [`Model`] from a list of [`CohSum`]s.
pub fn new(cohsums: Vec<CohSum>) -> Self {
let mut amp_names = HashSet::new();
let amplitudes: Vec<Amplitude> = cohsums
.iter()
.flat_map(|cohsum| cohsum.walk())
.filter_map(|amp| {
if amp_names.insert(amp.name.clone()) {
Some(amp)
} else {
None
}
})
.collect();
let parameter_tags: Vec<(String, String)> = amplitudes
.iter()
.flat_map(|amp| {
amp.parameters()
.iter()
.map(|p| (amp.name.clone(), p.clone()))
.collect::<Vec<_>>()
})
.collect();
let parameters = parameter_tags
.iter()
.enumerate()
.map(|(i, (amp_name, par_name))| Parameter::new(amp_name, par_name, i))
.collect();
Self {
cohsums: cohsums.into_iter().map(CohSum::from).collect(),
amplitudes,
parameters,
}
}
/// Computes the result of evaluating the terms in the model with the given [`Parameter`]s for
/// the given [`Event`] by summing the result of [`CohSum::compute`] for each [`CohSum`]
/// contained in the [`Model`].
///
/// # Errors
///
/// This method yields a [`RustitudeError`] if any of the [`Amplitude::calculate`] steps fail.
pub fn compute(&self, parameters: &[f64], event: &Event) -> Result<f64, RustitudeError> {
let pars: Vec<f64> = self
.parameters
.iter()
.map(|p| p.index.map_or_else(|| p.initial, |i| parameters[i]))
.collect();
// First, we calculate the values for the active amplitudes
let cache: Vec<Option<Complex64>> = self
.amplitudes
.iter()
.map(|amp| {
if amp.active {
amp.calculate(&pars, event).map(Some)
} else {
Ok(None)
}
})
.collect::<Result<Vec<Option<Complex64>>, RustitudeError>>()?;
Ok(self
.cohsums
.iter()
.map(|cohsum| cohsum.compute(&cache))
.sum::<Option<f64>>()
.unwrap_or_default())
}
/// Computes the result of evaluating the terms in the model with the given [`Parameter`]s for
/// the given [`Event`] by summing the result of [`CohSum::norm_int`] for each [`CohSum`]
/// contained in the [`Model`].
///
/// # Errors
///
/// This method yields a [`RustitudeError`] if any of the [`Amplitude::calculate`] steps fail.
pub fn norm_int(&self, parameters: &[f64], event: &Event) -> Result<f64, RustitudeError> {
let pars: Vec<f64> = self
.parameters
.iter()
.map(|p| p.index.map_or_else(|| p.initial, |i| parameters[i]))
.collect();
// First, we calculate the values for the active amplitudes
let cache: Vec<Option<Complex64>> = self
.amplitudes
.iter()
.map(|amp| {
if amp.active {
amp.calculate(&pars, event).map(Some)
} else {
Ok(None)
}
})
.collect::<Result<Vec<Option<Complex64>>, RustitudeError>>()?;
Ok(self
.cohsums
.iter()
.map(|cohsum| cohsum.norm_int(&cache))
.sum::<Option<f64>>()
.unwrap_or_default())
}
/// Registers the [`Model`] with the [`Dataset`] by [`Amplitude::register`]ing each
/// [`Amplitude`] and setting the proper cache position and parameter starting index.
///
/// # Errors
///
/// This method will yield a [`RustitudeError`] if any [`Amplitude::precalculate`] steps fail.
pub fn load(&mut self, dataset: &Dataset) -> Result<(), RustitudeError> {
let mut next_cache_pos = 0;
let mut parameter_index = 0;
self.amplitudes.iter_mut().try_for_each(|amp| {
amp.register(next_cache_pos, parameter_index, dataset)?;
self.cohsums.iter_mut().for_each(|cohsum| {
cohsum.walk_mut().iter_mut().for_each(|r_amp| {
if r_amp.name == amp.name {
r_amp.cache_position = next_cache_pos;
r_amp.parameter_index_start = parameter_index;
}
})
});
next_cache_pos += 1;
parameter_index += amp.parameters().len();
Ok(())
})
}
fn group_by_index(&self) -> Vec<Vec<&Parameter>> {
self.parameters
.iter()
.sorted_by_key(|par| par.index)
.chunk_by(|par| par.index)
.into_iter()
.map(|(_, group)| group.collect::<Vec<_>>())
.collect()
}
fn group_by_index_mut(&mut self) -> Vec<Vec<&mut Parameter>> {
self.parameters
.iter_mut()
.sorted_by_key(|par| par.index)
.chunk_by(|par| par.index)
.into_iter()
.map(|(_, group)| group.collect())
.collect()
}
fn any_fixed(&self) -> bool {
self.parameters.iter().any(|p| p.index.is_none())
}
fn reindex_parameters(&mut self) {
let any_fixed = if self.any_fixed() { 1 } else { 0 };
self.group_by_index_mut()
.iter_mut()
.skip(any_fixed) // first element could be index = None
.enumerate()
.for_each(|(ind, par_group)| par_group.iter_mut().for_each(|par| par.index = Some(ind)))
}
fn get_min_free_index(&self) -> Option<usize> {
self.parameters
.iter()
.filter_map(|p| p.index)
.max()
.map_or(Some(0), |max| Some(max + 1))
}
fn get_min_fixed_index(&self) -> Option<usize> {
self.parameters
.iter()
.filter_map(|p| p.fixed_index)
.max()
.map_or(Some(0), |max| Some(max + 1))
}
}
/// A [`Node`] for computing a single scalar value from an input parameter.
///
/// This struct implements [`Node`] to generate a single new parameter called `value`.
///
/// # Parameters:
///
/// - `value`: The value of the scalar.
pub struct Scalar;
impl Node for Scalar {
fn parameters(&self) -> Vec<String> {
vec!["value".to_string()]
}
fn calculate(&self, parameters: &[f64], _event: &Event) -> Result<Complex64, RustitudeError> {
Ok(Complex64::new(parameters[0], 0.0))
}
}
pub fn scalar(name: &str) -> AmpOp {
//! Creates a named [`Scalar`].
//!
//! This is a convenience method to generate an [`AmpOp`] which is just a single free
//! parameter called `value`.
//!
//! # Examples
//!
//! Basic usage:
//!
//! ```
//! use rustitude_core::prelude::*;
//! let my_scalar = scalar("MyScalar");
//! if let AmpOp::Amplitude(amp) = my_scalar {
//! assert_eq!(amp.node.read().parameters(), vec!["value".to_string()]);
//! }
//! ```
Amplitude::new(name, Scalar).into()
}
/// A [`Node`] for computing a single complex value from two input parameters.
///
/// This struct implements [`Node`] to generate a complex value from two input parameters called
/// `real` and `imag`.
///
/// # Parameters:
///
/// - `real`: The real part of the complex scalar.
/// - `imag`: The imaginary part of the complex scalar.
pub struct ComplexScalar;
impl Node for ComplexScalar {
fn calculate(&self, parameters: &[f64], _event: &Event) -> Result<Complex64, RustitudeError> {
Ok(Complex64::new(parameters[0], parameters[1]))
}
fn parameters(&self) -> Vec<String> {
vec!["real".to_string(), "imag".to_string()]
}
}
pub fn cscalar(name: &str) -> AmpOp {
//! Creates a named [`ComplexScalar`].
//!
//! This is a convenience method to generate an [`AmpOp`] which represents a complex
//! value determined by two parameters, `real` and `imag`.
//!
//! # Examples
//!
//! Basic usage:
//!
//! ```
//! use rustitude_core::prelude::*;
//! let my_cscalar = cscalar("MyComplexScalar");
//! if let AmpOp::Amplitude(amp) = my_cscalar {
//! assert_eq!(amp.node.read().parameters(), vec!["real".to_string(), "imag".to_string()]);
//! }
//! ```
Amplitude::new(name, ComplexScalar).into()
}
/// A [`Node`] for computing a single complex value from two input parameters in polar form.
///
/// This struct implements [`Node`] to generate a complex value from two input parameters called
/// `mag` and `phi`.
///
/// # Parameters:
///
/// - `mag`: The magnitude of the complex scalar.
/// - `phi`: The phase of the complex scalar.
pub struct PolarComplexScalar;
impl Node for PolarComplexScalar {
fn calculate(&self, parameters: &[f64], _event: &Event) -> Result<Complex64, RustitudeError> {
Ok(parameters[0] * Complex64::cis(parameters[1]))
}
fn parameters(&self) -> Vec<String> {
vec!["mag".to_string(), "phi".to_string()]
}
}
pub fn pcscalar(name: &str) -> AmpOp {
//! Creates a named [`PolarComplexScalar`].
//!
//! This is a convenience method to generate an [`AmpOp`] which represents a complex
//! value determined by two parameters, `real` and `imag`.
//!
//! # Examples
//!
//! Basic usage:
//!
//! ```
//! use rustitude_core::prelude::*;
//! let my_pcscalar = pcscalar("MyPolarComplexScalar");
//! if let AmpOp::Amplitude(amp) = my_pcscalar {
//! assert_eq!(amp.node.read().parameters(), vec!["mag".to_string(), "phi".to_string()]);
//! }
//! ```
Amplitude::new(name, PolarComplexScalar).into()
}
/// A generic struct which can be used to create any kind of piecewise function.
pub struct Piecewise<F>
where
F: Fn(&Event) -> f64 + Send + Sync + Copy,
{
edges: Vec<(f64, f64)>,
variable: F,
calculated_variable: Vec<f64>,
}
impl<F> Piecewise<F>
where
F: Fn(&Event) -> f64 + Send + Sync + Copy,
{
/// Create a new [`Piecewise`] struct from a number of bins, a range of values, and a callable
/// which defines a variable over the [`Event`]s in a [`Dataset`].
pub fn new(bins: usize, range: (f64, f64), variable: F) -> Self {
let diff = (range.1 - range.0) / (bins as f64);
let edges = (0..bins)
.map(|i| {
(
(i as f64).mul_add(diff, range.0),
((i + 1) as f64).mul_add(diff, range.0),
)
})
.collect();
Self {
edges,
variable,
calculated_variable: Vec::default(),
}
}
}
impl<F> Node for Piecewise<F>
where
F: Fn(&Event) -> f64 + Send + Sync + Copy,
{
fn precalculate(&mut self, dataset: &Dataset) -> Result<(), RustitudeError> {
self.calculated_variable = dataset
.events
.read()
.par_iter()
.map(self.variable)
.collect();
Ok(())
}
fn calculate(&self, parameters: &[f64], event: &Event) -> Result<Complex64, RustitudeError> {
let val = self.calculated_variable[event.index];
let opt_i_bin = self.edges.iter().position(|&(l, r)| val >= l && val <= r);
opt_i_bin.map_or_else(
|| Ok(Complex64::default()),
|i_bin| {
Ok(Complex64::new(
parameters[i_bin * 2],
parameters[(i_bin * 2) + 1],
))
},
)
}
fn parameters(&self) -> Vec<String> {
(0..self.edges.len())
.flat_map(|i| vec![format!("bin {} re", i), format!("bin {} im", i)])
.collect()
}
}
pub fn piecewise_m(name: &str, bins: usize, range: (f64, f64)) -> AmpOp {
//! Creates a named [`Piecewise`] amplitude with the resonance mass as the binning variable.
Amplitude::new(
name,
Piecewise::new(bins, range, |e: &Event| {
(e.daughter_p4s[0] + e.daughter_p4s[1]).m()
}),
)
.into()
}