1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
//! The amplitude module contains structs and methods for defining and manipulating [`Amplitude`]s
//! and [`Model`]s
//!
//! To create a new [`Amplitude`] in Rust, we simply need to implement the [`Node`] trait on a
//! struct. You can provide a convenience method for creating a new implementation of your
//! [`Amplitude`], or you can use the [`crate::amplitude!`] macro as a shortcut.
//!
//! Amplitudes are typically defined first, and then [`Model`]s are built by multiplying and
//! operating on [`Amplitude`]s as [`AmpOp`]s. These [`AmpOp`]s are summed into [`CohSum`]s
//! (coherent sums), and these are then summed by a [`Model`].
//!
//! We can then use [`Manager`](crate::manager::Manager)-like structs to handle computataion
//! over [`Dataset`]s.
use itertools::{iproduct, Itertools};
use nalgebra::ComplexField;
use num::complex::Complex64;
use parking_lot::RwLock;
use rayon::prelude::*;
use std::{
    collections::HashSet,
    fmt::{Debug, Display},
    ops::{Add, Mul},
    sync::Arc,
};

use crate::{
    dataset::{Dataset, Event},
    errors::RustitudeError,
};

/// A single parameter within an [`Amplitude`].
#[derive(Clone)]
pub struct Parameter {
    /// Name of the parent [`Amplitude`] containing this parameter.
    pub amplitude: String,
    /// Name of the parameter.
    pub name: String,
    /// Index of the parameter with respect to the [`Model`]. This will be [`Option::None`] if
    /// the parameter is fixed.
    pub index: Option<usize>,
    /// A separate index for fixed parameters to ensure they stay constrained properly if freed.
    /// This will be [`Option::None`] if the parameter is free in the [`Model`].
    pub fixed_index: Option<usize>,
    /// The initial value the parameter takes, or alternatively the value of the parameter if it is
    /// fixed in the fit.
    pub initial: f64,
    /// Bounds for the given parameter (defaults to +/- infinity). This is mostly optional and
    /// isn't used in any Rust code asside from being able to get and set it.
    pub bounds: (f64, f64),
}
impl Parameter {
    /// Creates a new [`Parameter`] within an [`Amplitude`] using the name of the [`Amplitude`],
    /// the name of the [`Parameter`], and the index of the parameter within the [`Model`].
    ///
    /// By default, new [`Parameter`]s are free, have an initial value of `0.0`, and their bounds
    /// are set to `(f64::NEG_INFINITY, f64::INFINITY)`.
    pub fn new(amplitude: &str, name: &str, index: usize) -> Self {
        Self {
            amplitude: amplitude.to_string(),
            name: name.to_string(),
            index: Some(index),
            fixed_index: None,
            initial: 0.0,
            bounds: (f64::NEG_INFINITY, f64::INFINITY),
        }
    }
}

impl Debug for Parameter {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        if self.index.is_none() {
            write!(
                f,
                "< {} >[ {} (*{}*) ]({:?})({:?})",
                self.amplitude, self.name, self.initial, self.index, self.fixed_index,
            )
        } else {
            write!(
                f,
                "< {} >[ {} ({}) ]({:?})({:?})",
                self.amplitude, self.name, self.initial, self.index, self.fixed_index,
            )
        }
    }
}
impl Display for Parameter {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        if self.index.is_none() {
            write!(
                f,
                "<{}>[ {} (*{}*) ]",
                self.amplitude, self.name, self.initial
            )
        } else {
            write!(
                f,
                "<{}>[ {} ({}) ]",
                self.amplitude, self.name, self.initial
            )
        }
    }
}

/// Creates a wrapped [`AmpOp`] which can be registered by a [`crate::amplitude::Model`].
///
/// This macro is a convenience method which takes a name and a [`Node`] and generates a new [`AmpOp`].
#[macro_export]
macro_rules! amplitude {
    ($name:expr, $node:expr) => {{
        Amplitude::new($name, $node).into()
    }};
}

/// A trait which contains all the required methods for a functioning [`Amplitude`].
///
/// The [`Node`] trait represents any mathematical structure which takes in some parameters and some
/// [`Event`] data and computes a [`Complex64`] for each [`Event`]. This is the fundamental
/// building block of all analyses built with Rustitude. Nodes are intended to be optimized at the
/// user level, so they should be implemented on structs which can store some precalculated data.
///
/// # Examples:
///
/// A [`Node`] for calculating spherical harmonics:
///
/// ```
/// use rustitude_core::prelude::*;
///
/// use nalgebra::{SMatrix, SVector};
/// use num_complex::Complex64;
/// use rayon::prelude::*;
/// use sphrs::SHEval;
/// use sphrs::{ComplexSH, Coordinates};
///
/// #[derive(Clone, Copy, Default)]
/// #[rustfmt::skip]
/// enum Wave {
///     #[default]
///     S,
///     S0,
///     Pn1, P0, P1, P,
///     Dn2, Dn1, D0, D1, D2, D,
///     Fn3, Fn2, Fn1, F0, F1, F2, F3, F,
/// }
///
/// #[rustfmt::skip]
/// impl Wave {
///     fn l(&self) -> i64 {
///         match self {
///             Self::S0 | Self::S => 0,
///             Self::Pn1 | Self::P0 | Self::P1 | Self::P => 1,
///             Self::Dn2 | Self::Dn1 | Self::D0 | Self::D1 | Self::D2 | Self::D => 2,
///             Self::Fn3 | Self::Fn2 | Self::Fn1 | Self::F0 | Self::F1 | Self::F2 | Self::F3 | Self::F => 3,
///         }
///     }
///     fn m(&self) -> i64 {
///         match self {
///             Self::S | Self::P | Self::D | Self::F => 0,
///             Self::S0 | Self::P0 | Self::D0 | Self::F0 => 0,
///             Self::Pn1 | Self::Dn1 | Self::Fn1 => -1,
///             Self::P1 | Self::D1 | Self::F1 => 1,
///             Self::Dn2 | Self::Fn2 => -2,
///             Self::D2 | Self::F2 => 2,
///             Self::Fn3 => -3,
///             Self::F3 => 3,
///         }
///     }
/// }
///
/// struct Ylm(Wave, Vec<Complex64>);
/// impl Ylm {
///     fn new(wave: Wave) -> Self {
///         Self(wave, Vec::default())
///     }
/// }
/// impl Node for Ylm {
///     fn parameters(&self) -> Vec<String> { vec![] }
///     fn precalculate(&mut self, dataset: &Dataset) -> Result<(), RustitudeError> {
///         self.1 = dataset.events.read()
///             .par_iter()
///             .map(|event| {
///                 let resonance = event.daughter_p4s[0] + event.daughter_p4s[1];
///                 let p1 = event.daughter_p4s[0];
///                 let recoil_res = event.recoil_p4.boost_along(&resonance); // Boost to helicity frame
///                 let p1_res = p1.boost_along(&resonance);
///                 let z = -1.0 * recoil_res.momentum().normalize();
///                 let y = event
///                     .beam_p4
///                     .momentum()
///                     .cross(&(-1.0 * event.recoil_p4.momentum()));
///                 let x = y.cross(&z);
///                 let p1_vec = p1_res.momentum();
///                 let p = Coordinates::cartesian(p1_vec.dot(&x), p1_vec.dot(&y), p1_vec.dot(&z));
///                 ComplexSH::Spherical.eval(self.0.l(), self.0.m(), &p)
///             })
///             .collect();
///         Ok(())
///     }
///
///     fn calculate(&self, _parameters: &[f64], event: &Event) -> Result<Complex64, RustitudeError> {
///         Ok(self.1[event.index])
///     }
/// }
/// ```
///
/// A [`Node`] which computes a single complex scalar entirely determined by input parameters:
///
/// ```
/// use rustitude_core::prelude::*;
/// struct ComplexScalar;
/// impl Node for ComplexScalar {
///     fn calculate(&self, parameters: &[f64], _event: &Event) -> Result<Complex64, RustitudeError> {
///         Ok(Complex64::new(parameters[0], parameters[1]))
///     }
///
///     fn parameters(&self) -> Vec<String> {
///         vec!["real".to_string(), "imag".to_string()]
///     }
/// }
/// ```
pub trait Node: Sync + Send {
    /// A method that is run once and stores some precalculated values given a [`Dataset`] input.
    ///
    /// This method is intended to run expensive calculations which don't actually depend on the
    /// parameters. For instance, to calculate a spherical harmonic, we don't actually need any
    /// other information than what is contained in the [`Event`], so we can calculate a spherical
    /// harmonic for every event once and then retrieve the data in the [`Node::calculate`] method.
    ///
    /// # Errors
    ///
    /// This function should be written to return a [`RustitudeError`] if any part of the
    /// calculation fails.
    fn precalculate(&mut self, _dataset: &Dataset) -> Result<(), RustitudeError> {
        Ok(())
    }

    /// A method which runs every time the amplitude is evaluated and produces a [`Complex64`].
    ///
    /// Because this method is run on every evaluation, it should be as lean as possible.
    /// Additionally, you should avoid [`rayon`]'s parallel loops inside this method since we
    /// already parallelize over the [`Dataset`]. This method expects a single [`Event`] as well as
    /// a slice of [`f64`]s. This slice is guaranteed to have the same length and order as
    /// specified in the [`Node::parameters`] method, or it will be empty if that method returns
    /// [`None`].
    ///
    /// # Errors
    ///
    /// This function should be written to return a [`RustitudeError`] if any part of the
    /// calculation fails.
    fn calculate(&self, parameters: &[f64], event: &Event) -> Result<Complex64, RustitudeError>;

    /// A method which specifies the number and order of parameters used by the [`Node`].
    ///
    /// This method tells the [`crate::manager::Manager`] how to assign its input [`Vec`] of parameter values to
    /// each [`Node`]. If this method returns [`None`], it is implied that the [`Node`] takes no
    /// parameters as input. Otherwise, the parameter names should be listed in the same order they
    /// are expected to be given as input to the [`Node::calculate`] method.
    fn parameters(&self) -> Vec<String> {
        vec![]
    }
}

/// An enum for storing individual [`Amplitude`]s as well as products of [`AmpOp`]s or the real or
/// imaginary part of a single [`AmpOp`]. Sums of [`AmpOp`]s are handeled by the [`CohSum`] struct.
///
/// These structs follow some rules for addition and multiplication:
///
/// > `AmpOp + AmpOp = CohSum`
/// >
/// > `AmpOp + CohSum = CohSum` (appending)
/// >
/// > `CohSum + CohSum = CohSum` (concatenating)
///
/// > `AmpOp * AmpOp = AmpOp`
/// >
/// > `AmpOp * CohSum = CohSum` (`AmpOp` is distributed over terms of `CohSum`)
/// >
/// > `CohSum * CohSum = UNDEFINED`
///
/// This format should be able to handle any generalized intensity equation based on amplitude
/// nodes. For instance, if an incoherent sum is needed, two separate [`CohSum`]s can be created
/// and input as terns in the same [`Model`], since the results are summed normally there.
#[derive(Clone)]
pub enum AmpOp {
    /// An [`Amplitude`] defined by the user.
    Amplitude(Amplitude),
    /// The product of a set of [`AmpOp`]s.
    Product(Vec<AmpOp>),
    /// The real part of an [`AmpOp`].
    Real(Box<AmpOp>),
    /// The imag part of an [`AmpOp`].
    Imag(Box<AmpOp>),
}

impl Debug for AmpOp {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Self::Amplitude(amp) => writeln!(f, "{:?}", amp),
            Self::Product(ops) => {
                write!(f, "Prod [ ")?;
                for op in ops {
                    write!(f, "{:?} ", op)?;
                }
                write!(f, "]")
            }
            Self::Real(op) => write!(f, "Re[{:?}]", op),
            Self::Imag(op) => write!(f, "Im[{:?}]", op),
        }
    }
}
impl Display for AmpOp {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Self::Amplitude(amp) => writeln!(f, "{}", amp),
            Self::Product(ops) => {
                write!(f, "Prod [ ")?;
                for op in ops {
                    write!(f, "{} ", op)?;
                }
                write!(f, "]")
            }
            Self::Real(op) => write!(f, "Re[{:?}]", op),
            Self::Imag(op) => write!(f, "Im[{:?}]", op),
        }
    }
}
impl AmpOp {
    /// Pretty prints a tree diagram to show the node structure of the [`AmpOp`].
    pub fn print_tree(&self) {
        self._print_tree(vec![]);
    }
    fn _print_indent(bits: &[bool]) {
        bits.iter()
            .for_each(|b| if *b { print!("  ┃ ") } else { print!("    ") });
    }
    fn _print_intermediate() {
        print!("  ┣━");
    }
    fn _print_end() {
        print!("  ┗━");
    }
    fn _print_tree(&self, mut bits: Vec<bool>) {
        match self {
            Self::Amplitude(amp) => {
                if amp.parameters().len() > 7 {
                    println!(
                        " {}{}({},...)",
                        if amp.active { "!" } else { "" },
                        amp.name,
                        amp.parameters()[0..7].join(", ")
                    );
                } else {
                    println!(
                        " {}{}({})",
                        if amp.active { "!" } else { "" },
                        amp.name,
                        amp.parameters().join(", ")
                    );
                }
            }
            Self::Product(ops) => {
                println!("[ * ]");
                for (i, op) in ops.iter().enumerate() {
                    Self::_print_indent(&bits);
                    if i == ops.len() - 1 {
                        Self::_print_end();
                        bits.push(false);
                    } else {
                        Self::_print_intermediate();
                        bits.push(true);
                    }
                    op._print_tree(bits.clone());
                    bits.pop();
                }
            }
            Self::Real(op) => {
                println!("[ real ]");
                Self::_print_indent(&bits);
                Self::_print_end();
                bits.push(false);
                op._print_tree(bits.clone());
                bits.pop();
            }
            Self::Imag(op) => {
                println!("[ imag ]");
                Self::_print_indent(&bits);
                Self::_print_end();
                bits.push(false);
                op._print_tree(bits.clone());
                bits.pop();
            }
        }
    }
    /// Walks through an [`AmpOp`] and collects all the contained [`Amplitude`]s recursively.
    pub fn walk(&self) -> Vec<Amplitude> {
        match self {
            Self::Amplitude(amp) => vec![amp.clone()],
            Self::Product(ops) => ops.iter().flat_map(|op| op.walk()).collect(),
            Self::Real(op) => op.walk(),
            Self::Imag(op) => op.walk(),
        }
    }
    /// Walks through an [`AmpOp`] and collects all the contained [`Amplitude`]s recursively. This
    /// method gives mutable access to said [`Amplitude`]s.
    pub fn walk_mut(&mut self) -> Vec<&mut Amplitude> {
        match self {
            Self::Amplitude(amp) => vec![amp],
            Self::Product(ops) => ops.iter_mut().flat_map(|op| op.walk_mut()).collect(),
            Self::Real(op) => op.walk_mut(),
            Self::Imag(op) => op.walk_mut(),
        }
    }
    /// Shortcut for computation using a cache of precomputed values. This method will return
    /// [`None`] if the cache value at the corresponding [`Amplitude`]'s
    /// [`Amplitude::cache_position`] is also [`None`], otherwise it just returns the corresponding
    /// cached value. Other branches of the enum will perform various operations, such as getting
    /// the product, real part, or imaginary part, and these will also have [`None`] values passed
    /// through.
    pub fn compute(&self, cache: &[Option<Complex64>]) -> Option<Complex64> {
        match self {
            Self::Amplitude(amp) => cache[amp.cache_position],
            Self::Product(ops) => Some(ops.iter().filter_map(|op| op.compute(cache)).product()),
            Self::Real(op) => op.compute(cache).map(|r| r.re.into()),
            Self::Imag(op) => op.compute(cache).map(|r| r.im.into()),
        }
    }
    /// Converts an [`AmpOp`] into a [`AmpOp::Real`] containing that [`AmpOp`].
    pub fn real(&self) -> Self {
        Self::Real(Box::new(self.clone()))
    }
    /// Converts an [`AmpOp`] into a [`AmpOp::Imag`] containing that [`AmpOp`].
    pub fn imag(&self) -> Self {
        Self::Imag(Box::new(self.clone()))
    }
}
impl Add for AmpOp {
    type Output = CohSum;

    fn add(self, rhs: Self) -> Self::Output {
        CohSum(vec![self, rhs])
    }
}
impl Add<AmpOp> for &AmpOp {
    type Output = <AmpOp as Add>::Output;

    fn add(self, rhs: AmpOp) -> Self::Output {
        AmpOp::add(self.clone(), rhs)
    }
}
impl Add<&Self> for AmpOp {
    type Output = <Self as Add>::Output;

    fn add(self, rhs: &Self) -> Self::Output {
        Self::add(self, rhs.clone())
    }
}
impl Add for &AmpOp {
    type Output = <AmpOp as Add>::Output;

    fn add(self, rhs: Self) -> Self::Output {
        AmpOp::add(self.clone(), rhs.clone())
    }
}

impl Add<CohSum> for AmpOp {
    type Output = CohSum;

    fn add(self, rhs: CohSum) -> Self::Output {
        CohSum([vec![self], rhs.0].concat())
    }
}
impl Add<AmpOp> for CohSum {
    type Output = Self;

    fn add(self, rhs: AmpOp) -> Self::Output {
        Self([self.0, vec![rhs]].concat())
    }
}
impl Add<Self> for CohSum {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        Self([self.0, rhs.0].concat())
    }
}

impl Mul for AmpOp {
    type Output = Self;

    fn mul(self, rhs: Self) -> Self::Output {
        match (self.clone(), rhs.clone()) {
            (Self::Product(ops_l), Self::Product(ops_r)) => Self::Product([ops_l, ops_r].concat()),
            (Self::Product(ops), _) => {
                let mut sum_ops = ops;
                sum_ops.push(rhs);
                Self::Product(sum_ops)
            }
            (_, Self::Product(ops)) => {
                let mut sum_ops = ops;
                sum_ops.push(self);
                Self::Product(sum_ops)
            }
            (_, _) => Self::Product(vec![self, rhs]),
        }
    }
}
impl Mul<AmpOp> for &AmpOp {
    type Output = <AmpOp as Mul>::Output;

    fn mul(self, rhs: AmpOp) -> Self::Output {
        AmpOp::mul(self.clone(), rhs)
    }
}
impl Mul<&Self> for AmpOp {
    type Output = <Self as Mul>::Output;

    fn mul(self, rhs: &Self) -> Self::Output {
        Self::mul(self, rhs.clone())
    }
}
impl Mul for &AmpOp {
    type Output = <AmpOp as Mul>::Output;

    fn mul(self, rhs: Self) -> Self::Output {
        AmpOp::mul(self.clone(), rhs.clone())
    }
}

impl Mul<CohSum> for AmpOp {
    type Output = CohSum;

    fn mul(self, rhs: CohSum) -> Self::Output {
        CohSum(rhs.0.iter().map(|term| self.clone() * term).collect())
    }
}
impl Mul<AmpOp> for CohSum {
    type Output = Self;

    fn mul(self, rhs: AmpOp) -> Self::Output {
        Self(self.0.iter().map(|term| term * rhs.clone()).collect())
    }
}

impl From<AmpOp> for CohSum {
    fn from(op: AmpOp) -> Self {
        Self(vec![op])
    }
}

/// A struct which stores a named [`Node`].
///
/// The [`Amplitude`] struct turns a [`Node`] trait into a concrete type and also stores a name
/// associated with the [`Node`]. This allows us to distinguish multiple uses of the same [`Node`]
/// in an analysis, and makes each [`Node`]'s parameters unique.
///
/// This is mostly used interally as an intermediate step to an [`AmpOp`].
#[derive(Clone)]
pub struct Amplitude {
    /// A name which uniquely identifies an [`Amplitude`] within a sum and group.
    pub name: String,
    /// A [`Node`] which contains all of the operations needed to compute a [`Complex64`] from an
    /// [`Event`] in a [`Dataset`], a [`Vec<f64>`] of parameter values, and possibly some
    /// precomputed values.
    pub node: Arc<RwLock<Box<dyn Node>>>,
    /// Indicates whether the amplitude should be included in calculations or skipped.
    pub active: bool,
    /// Indicates the reserved position in the cache for shortcutting computation with a
    /// precomputed cache.
    pub cache_position: usize,
    /// Indicates the position in the final parameter vector that coincides with the starting index
    /// for parameters in this [`Amplitude`]
    pub parameter_index_start: usize,
}

impl Debug for Amplitude {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Amplitude")
            .field("name", &self.name)
            .field("active", &self.active)
            .field("cache_position", &self.cache_position)
            .field("parameter_index_start", &self.parameter_index_start)
            .finish()
    }
}
impl Display for Amplitude {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        if self.active {
            write!(f, "{}", self.name)
        } else {
            write!(f, "# {} #", self.name)
        }
    }
}
impl From<Amplitude> for AmpOp {
    fn from(amp: Amplitude) -> Self {
        Self::Amplitude(amp)
    }
}
impl Amplitude {
    /// Creates a new [`Amplitude`] from a name and a [`Node`]-implementing struct.
    pub fn new(name: &str, node: impl Node + 'static) -> Self {
        Self {
            name: name.to_string(),
            node: Arc::new(RwLock::new(Box::new(node))),
            active: true,
            cache_position: 0,
            parameter_index_start: 0,
        }
    }
    /// Set the [`Amplitude::cache_position`] and [`Amplitude::parameter_index_start`] and runs
    /// [`Amplitude::precalculate`] over the given [`Dataset`].
    ///
    /// # Errors
    /// This function will raise a [`RustitudeError`] if the precalculation step fails.
    pub fn register(
        &mut self,
        cache_position: usize,
        parameter_index_start: usize,
        dataset: &Dataset,
    ) -> Result<(), RustitudeError> {
        self.cache_position = cache_position;
        self.parameter_index_start = parameter_index_start;
        self.precalculate(dataset)
    }
}
impl Node for Amplitude {
    fn precalculate(&mut self, dataset: &Dataset) -> Result<(), RustitudeError> {
        self.node.write().precalculate(dataset)
    }
    fn calculate(&self, parameters: &[f64], event: &Event) -> Result<Complex64, RustitudeError> {
        self.node.read().calculate(
            &parameters
                [self.parameter_index_start..self.parameter_index_start + self.parameters().len()],
            event,
        )
    }
    fn parameters(&self) -> Vec<String> {
        self.node.read().parameters()
    }
}

/// Struct to hold a coherent sum of [`AmpOp`]s
#[derive(Clone)]
pub struct CohSum(Vec<AmpOp>);

impl Debug for CohSum {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "Sum [ ")?;
        for op in &self.0 {
            write!(f, "{:?} ", op)?;
        }
        write!(f, "]")
    }
}
impl CohSum {
    /// Create a new [`CohSum`] from a [`Vec`] of terms ([`AmpOp`]s).
    pub fn new(terms: Vec<AmpOp>) -> Self {
        Self(terms)
    }

    /// Pretty prints a tree diagram to show the node structure of the [`CohSum`].
    pub fn print_tree(&self) {
        let bits = vec![true];
        println!("[ CohSum ]");
        for term in self.0.iter() {
            term._print_tree(bits.clone())
        }
    }
    /// Function which returns a sum of all cross terms inside a coherent sum.
    ///
    /// Take the following coherent sum, where $`\vec{p}`$ are input parameters $`e`$ is an
    /// event, and $`f_i`$ is the $`i`$th term in the sum:
    ///
    /// ```math
    /// \left| \sum_{i\in\text{terms}} f_i(\vec{p}, e) \right|^2
    /// ```
    ///
    /// This function will then return
    ///
    /// ```math
    /// \sum_{i\in\text{terms}} \sum_{j\in\text{terms}} f_i(\vec{p}, e) f_j^*(\vec{p}, e)
    /// ```
    ///
    /// This should be used to compute normalization integrals. Note that if on of the terms is
    /// [`None`], this function will not add any products which contain that term. This can be used
    /// to turn terms on and off.
    pub fn norm_int(&self, cache: &[Option<Complex64>]) -> Option<f64> {
        let results = self.0.iter().map(|op| op.compute(cache));
        iproduct!(results.clone(), results)
            .map(|terms| match terms {
                (None, None) | (None, Some(_)) | (Some(_), None) => None,
                (Some(a), Some(b)) => Some(a * b.conjugate()),
            })
            .sum::<Option<Complex64>>()
            .map(|val| val.re)
    }

    /// Shortcut for computation using a cache of precomputed values. This method will return
    /// [`None`] if the cache value at the corresponding [`Amplitude`]'s
    /// [`Amplitude::cache_position`] is also [`None`], otherwise it just returns the corresponding
    /// cached value. The computation is run across the [`CohSum`]'s terms, and the absolute square
    /// of the result is returned (coherent sum).
    pub fn compute(&self, cache: &[Option<Complex64>]) -> Option<f64> {
        self.0
            .iter()
            .map(|ampop| ampop.compute(cache))
            .sum::<Option<Complex64>>()
            .map(|val| val.norm_sqr())
    }

    /// Walks through a [`CohSum`] and collects all the contained [`Amplitude`]s recursively.
    pub fn walk(&self) -> Vec<Amplitude> {
        self.0.iter().flat_map(|op| op.walk()).collect()
    }

    /// Walks through an [`CohSum`] and collects all the contained [`Amplitude`]s recursively. This
    /// method gives mutable access to said [`Amplitude`]s.
    pub fn walk_mut(&mut self) -> Vec<&mut Amplitude> {
        self.0.iter_mut().flat_map(|op| op.walk_mut()).collect()
    }
}

/// A model contains an API to interact with a group of [`CohSum`]s by managing their amplitudes
/// and parameters. Models are typically passed to [`Manager`](crate::manager::Manager)-like
/// struct.
#[derive(Debug, Clone)]
pub struct Model {
    /// The set of coherent sums included in the [`Model`].
    pub cohsums: Vec<CohSum>,
    /// The unique amplitudes located within all [`CohSum`]s.
    pub amplitudes: Vec<Amplitude>,
    /// The unique parameters located within all [`CohSum`]s.
    pub parameters: Vec<Parameter>,
}

impl Model {
    /// Pretty-prints a tree diagram to show the node structure of the [`Model`].
    pub fn print_tree(&self) {
        for cohsum in &self.cohsums {
            cohsum.print_tree()
        }
    }
    /// Retrieves a copy of an [`Amplitude`] in the [`Model`] by name.
    ///
    /// # Errors
    /// This will throw a [`RustitudeError`] if the amplitude name is not located within the model.
    pub fn get_amplitude(&self, amplitude_name: &str) -> Result<Amplitude, RustitudeError> {
        self.amplitudes
            .iter()
            .find(|a: &&Amplitude| a.name == amplitude_name)
            .ok_or_else(|| RustitudeError::AmplitudeNotFoundError(amplitude_name.to_string()))
            .cloned()
    }
    /// Retrieves a copy of a [`Parameter`] in the [`Model`] by name.
    ///
    /// # Errors
    /// This will throw a [`RustitudeError`] if the parameter name is not located within the model
    /// or if the amplitude name is not located within the model (this is checked first).
    pub fn get_parameter(
        &self,
        amplitude_name: &str,
        parameter_name: &str,
    ) -> Result<Parameter, RustitudeError> {
        self.get_amplitude(amplitude_name)?;
        self.parameters
            .iter()
            .find(|p: &&Parameter| p.amplitude == amplitude_name && p.name == parameter_name)
            .ok_or_else(|| RustitudeError::ParameterNotFoundError(parameter_name.to_string()))
            .cloned()
    }
    /// Pretty-prints all parameters in the model
    pub fn print_parameters(&self) {
        let any_fixed = if self.any_fixed() { 1 } else { 0 };
        if self.any_fixed() {
            println!(
                "Fixed: {}",
                self.group_by_index()[0]
                    .iter()
                    .map(|p| format!("{:?}", p))
                    .join(", ")
            );
        }
        for (i, group) in self.group_by_index().iter().skip(any_fixed).enumerate() {
            println!(
                "{}: {}",
                i,
                group.iter().map(|p| format!("{:?}", p)).join(", ")
            );
        }
    }
    /// Constrains two [`Parameter`]s in the [`Model`] to be equal to each other when evaluated.
    ///
    /// # Errors
    ///
    /// This method will yield a [`RustitudeError`] if either of the parameters is not found by
    /// name.
    pub fn constrain(
        &mut self,
        amplitude_1: &str,
        parameter_1: &str,
        amplitude_2: &str,
        parameter_2: &str,
    ) -> Result<(), RustitudeError> {
        let p1 = self.get_parameter(amplitude_1, parameter_1)?;
        let p2 = self.get_parameter(amplitude_2, parameter_2)?;
        for par in self.parameters.iter_mut() {
            // None < Some(0)
            match p1.index.cmp(&p2.index) {
                // p1 < p2
                std::cmp::Ordering::Less => {
                    if par.index == p2.index {
                        par.index = p1.index;
                        par.initial = p1.initial;
                        par.fixed_index = p1.fixed_index;
                    }
                }
                std::cmp::Ordering::Equal => unimplemented!(),
                // p2 < p1
                std::cmp::Ordering::Greater => {
                    if par.index == p1.index {
                        par.index = p2.index;
                        par.initial = p2.initial;
                        par.fixed_index = p2.fixed_index;
                    }
                }
            }
        }
        self.reindex_parameters();
        Ok(())
    }

    /// Fixes a [`Parameter`] in the [`Model`] to a given value.
    ///
    /// This method technically sets the [`Parameter`] to be fixed and gives it an initial value of
    /// the given value. This method also handles groups of constrained parameters.
    ///
    /// # Errors
    ///
    /// This method yields a [`RustitudeError`] if the parameter is not found by name.
    pub fn fix(
        &mut self,
        amplitude: &str,
        parameter: &str,
        value: f64,
    ) -> Result<(), RustitudeError> {
        let search_par = self.get_parameter(amplitude, parameter)?;
        let fixed_index = self.get_min_fixed_index();
        for par in self.parameters.iter_mut() {
            if par.index == search_par.index {
                par.index = None;
                par.initial = value;
                par.fixed_index = fixed_index;
            }
        }
        self.reindex_parameters();
        Ok(())
    }
    /// Frees a [`Parameter`] in the [`Model`].
    ///
    /// This method does not modify the initial value of the parameter. This method
    /// also handles groups of constrained parameters.
    ///
    /// # Errors
    ///
    /// This method yields a [`RustitudeError`] if the parameter is not found by name.
    pub fn free(&mut self, amplitude: &str, parameter: &str) -> Result<(), RustitudeError> {
        let search_par = self.get_parameter(amplitude, parameter)?;
        let index = self.get_min_free_index();
        for par in self.parameters.iter_mut() {
            if par.fixed_index == search_par.fixed_index {
                par.index = index;
                par.fixed_index = None;
            }
        }
        self.reindex_parameters();
        Ok(())
    }
    /// Sets the bounds on a [`Parameter`] in the [`Model`].
    ///
    /// # Errors
    ///
    /// This method yields a [`RustitudeError`] if the parameter is not found by name.
    pub fn set_bounds(
        &mut self,
        amplitude: &str,
        parameter: &str,
        bounds: (f64, f64),
    ) -> Result<(), RustitudeError> {
        let search_par = self.get_parameter(amplitude, parameter)?;
        if search_par.index.is_some() {
            for par in self.parameters.iter_mut() {
                if par.index == search_par.index {
                    par.bounds = bounds;
                }
            }
        } else {
            for par in self.parameters.iter_mut() {
                if par.fixed_index == search_par.fixed_index {
                    par.bounds = bounds;
                }
            }
        }
        Ok(())
    }
    /// Sets the initial value of a [`Parameter`] in the [`Model`].
    ///
    /// # Errors
    ///
    /// This method yields a [`RustitudeError`] if the parameter is not found by name.
    pub fn set_initial(
        &mut self,
        amplitude: &str,
        parameter: &str,
        initial: f64,
    ) -> Result<(), RustitudeError> {
        let search_par = self.get_parameter(amplitude, parameter)?;
        if search_par.index.is_some() {
            for par in self.parameters.iter_mut() {
                if par.index == search_par.index {
                    par.initial = initial;
                }
            }
        } else {
            for par in self.parameters.iter_mut() {
                if par.fixed_index == search_par.fixed_index {
                    par.initial = initial;
                }
            }
        }
        Ok(())
    }
    /// Returns a list of bounds of free [`Parameter`]s in the [`Model`].
    pub fn get_bounds(&self) -> Vec<(f64, f64)> {
        let any_fixed = if self.any_fixed() { 1 } else { 0 };
        self.group_by_index()
            .iter()
            .skip(any_fixed)
            .filter_map(|group| group.first().map(|par| par.bounds))
            .collect()
    }
    /// Returns a list of initial values of free [`Parameter`]s in the [`Model`].
    pub fn get_initial(&self) -> Vec<f64> {
        let any_fixed = if self.any_fixed() { 1 } else { 0 };
        self.group_by_index()
            .iter()
            .skip(any_fixed)
            .filter_map(|group| group.first().map(|par| par.initial))
            .collect()
    }
    /// Returns the number of free [`Parameter`]s in the [`Model`].
    pub fn get_n_free(&self) -> usize {
        self.get_min_free_index().unwrap_or(0)
    }
    /// Activates an [`Amplitude`] in the [`Model`] by name.
    pub fn activate(&mut self, amplitude: &str) {
        self.amplitudes.iter_mut().for_each(|amp| {
            if amp.name == amplitude {
                amp.active = true
            }
        })
    }
    /// Deactivates an [`Amplitude`] in the [`Model`] by name.
    pub fn deactivate(&mut self, amplitude: &str) {
        self.amplitudes.iter_mut().for_each(|amp| {
            if amp.name == amplitude {
                amp.active = false
            }
        })
    }
    /// Creates a new [`Model`] from a list of [`CohSum`]s.
    pub fn new(cohsums: Vec<CohSum>) -> Self {
        let mut amp_names = HashSet::new();
        let amplitudes: Vec<Amplitude> = cohsums
            .iter()
            .flat_map(|cohsum| cohsum.walk())
            .filter_map(|amp| {
                if amp_names.insert(amp.name.clone()) {
                    Some(amp)
                } else {
                    None
                }
            })
            .collect();
        let parameter_tags: Vec<(String, String)> = amplitudes
            .iter()
            .flat_map(|amp| {
                amp.parameters()
                    .iter()
                    .map(|p| (amp.name.clone(), p.clone()))
                    .collect::<Vec<_>>()
            })
            .collect();
        let parameters = parameter_tags
            .iter()
            .enumerate()
            .map(|(i, (amp_name, par_name))| Parameter::new(amp_name, par_name, i))
            .collect();
        Self {
            cohsums: cohsums.into_iter().map(CohSum::from).collect(),
            amplitudes,
            parameters,
        }
    }
    /// Computes the result of evaluating the terms in the model with the given [`Parameter`]s for
    /// the given [`Event`] by summing the result of [`CohSum::compute`] for each [`CohSum`]
    /// contained in the [`Model`].
    ///
    /// # Errors
    ///
    /// This method yields a [`RustitudeError`] if any of the [`Amplitude::calculate`] steps fail.
    pub fn compute(&self, parameters: &[f64], event: &Event) -> Result<f64, RustitudeError> {
        let pars: Vec<f64> = self
            .parameters
            .iter()
            .map(|p| p.index.map_or_else(|| p.initial, |i| parameters[i]))
            .collect();
        // First, we calculate the values for the active amplitudes
        let cache: Vec<Option<Complex64>> = self
            .amplitudes
            .iter()
            .map(|amp| {
                if amp.active {
                    amp.calculate(&pars, event).map(Some)
                } else {
                    Ok(None)
                }
            })
            .collect::<Result<Vec<Option<Complex64>>, RustitudeError>>()?;
        Ok(self
            .cohsums
            .iter()
            .map(|cohsum| cohsum.compute(&cache))
            .sum::<Option<f64>>()
            .unwrap_or_default())
    }
    /// Computes the result of evaluating the terms in the model with the given [`Parameter`]s for
    /// the given [`Event`] by summing the result of [`CohSum::norm_int`] for each [`CohSum`]
    /// contained in the [`Model`].
    ///
    /// # Errors
    ///
    /// This method yields a [`RustitudeError`] if any of the [`Amplitude::calculate`] steps fail.
    pub fn norm_int(&self, parameters: &[f64], event: &Event) -> Result<f64, RustitudeError> {
        let pars: Vec<f64> = self
            .parameters
            .iter()
            .map(|p| p.index.map_or_else(|| p.initial, |i| parameters[i]))
            .collect();
        // First, we calculate the values for the active amplitudes
        let cache: Vec<Option<Complex64>> = self
            .amplitudes
            .iter()
            .map(|amp| {
                if amp.active {
                    amp.calculate(&pars, event).map(Some)
                } else {
                    Ok(None)
                }
            })
            .collect::<Result<Vec<Option<Complex64>>, RustitudeError>>()?;
        Ok(self
            .cohsums
            .iter()
            .map(|cohsum| cohsum.norm_int(&cache))
            .sum::<Option<f64>>()
            .unwrap_or_default())
    }
    /// Registers the [`Model`] with the [`Dataset`] by [`Amplitude::register`]ing each
    /// [`Amplitude`] and setting the proper cache position and parameter starting index.
    ///
    /// # Errors
    ///
    /// This method will yield a [`RustitudeError`] if any [`Amplitude::precalculate`] steps fail.
    pub fn load(&mut self, dataset: &Dataset) -> Result<(), RustitudeError> {
        let mut next_cache_pos = 0;
        let mut parameter_index = 0;
        self.amplitudes.iter_mut().try_for_each(|amp| {
            amp.register(next_cache_pos, parameter_index, dataset)?;
            self.cohsums.iter_mut().for_each(|cohsum| {
                cohsum.walk_mut().iter_mut().for_each(|r_amp| {
                    if r_amp.name == amp.name {
                        r_amp.cache_position = next_cache_pos;
                        r_amp.parameter_index_start = parameter_index;
                    }
                })
            });
            next_cache_pos += 1;
            parameter_index += amp.parameters().len();
            Ok(())
        })
    }
    fn group_by_index(&self) -> Vec<Vec<&Parameter>> {
        self.parameters
            .iter()
            .sorted_by_key(|par| par.index)
            .chunk_by(|par| par.index)
            .into_iter()
            .map(|(_, group)| group.collect::<Vec<_>>())
            .collect()
    }
    fn group_by_index_mut(&mut self) -> Vec<Vec<&mut Parameter>> {
        self.parameters
            .iter_mut()
            .sorted_by_key(|par| par.index)
            .chunk_by(|par| par.index)
            .into_iter()
            .map(|(_, group)| group.collect())
            .collect()
    }
    fn any_fixed(&self) -> bool {
        self.parameters.iter().any(|p| p.index.is_none())
    }
    fn reindex_parameters(&mut self) {
        let any_fixed = if self.any_fixed() { 1 } else { 0 };
        self.group_by_index_mut()
            .iter_mut()
            .skip(any_fixed) // first element could be index = None
            .enumerate()
            .for_each(|(ind, par_group)| par_group.iter_mut().for_each(|par| par.index = Some(ind)))
    }
    fn get_min_free_index(&self) -> Option<usize> {
        self.parameters
            .iter()
            .filter_map(|p| p.index)
            .max()
            .map_or(Some(0), |max| Some(max + 1))
    }
    fn get_min_fixed_index(&self) -> Option<usize> {
        self.parameters
            .iter()
            .filter_map(|p| p.fixed_index)
            .max()
            .map_or(Some(0), |max| Some(max + 1))
    }
}

/// A [`Node`] for computing a single scalar value from an input parameter.
///
/// This struct implements [`Node`] to generate a single new parameter called `value`.
///
/// # Parameters:
///
/// - `value`: The value of the scalar.
pub struct Scalar;
impl Node for Scalar {
    fn parameters(&self) -> Vec<String> {
        vec!["value".to_string()]
    }
    fn calculate(&self, parameters: &[f64], _event: &Event) -> Result<Complex64, RustitudeError> {
        Ok(Complex64::new(parameters[0], 0.0))
    }
}

pub fn scalar(name: &str) -> AmpOp {
    //! Creates a named [`Scalar`].
    //!
    //! This is a convenience method to generate an [`AmpOp`] which is just a single free
    //! parameter called `value`.
    //!
    //! # Examples
    //!
    //! Basic usage:
    //!
    //! ```
    //! use rustitude_core::prelude::*;
    //! let my_scalar = scalar("MyScalar");
    //! if let AmpOp::Amplitude(amp) = my_scalar {
    //!     assert_eq!(amp.node.read().parameters(), vec!["value".to_string()]);
    //! }
    //! ```
    Amplitude::new(name, Scalar).into()
}
/// A [`Node`] for computing a single complex value from two input parameters.
///
/// This struct implements [`Node`] to generate a complex value from two input parameters called
/// `real` and `imag`.
///
/// # Parameters:
///
/// - `real`: The real part of the complex scalar.
/// - `imag`: The imaginary part of the complex scalar.
pub struct ComplexScalar;
impl Node for ComplexScalar {
    fn calculate(&self, parameters: &[f64], _event: &Event) -> Result<Complex64, RustitudeError> {
        Ok(Complex64::new(parameters[0], parameters[1]))
    }

    fn parameters(&self) -> Vec<String> {
        vec!["real".to_string(), "imag".to_string()]
    }
}

pub fn cscalar(name: &str) -> AmpOp {
    //! Creates a named [`ComplexScalar`].
    //!
    //! This is a convenience method to generate an [`AmpOp`] which represents a complex
    //! value determined by two parameters, `real` and `imag`.
    //!
    //! # Examples
    //!
    //! Basic usage:
    //!
    //! ```
    //! use rustitude_core::prelude::*;
    //! let my_cscalar = cscalar("MyComplexScalar");
    //! if let AmpOp::Amplitude(amp) = my_cscalar {
    //!     assert_eq!(amp.node.read().parameters(), vec!["real".to_string(), "imag".to_string()]);
    //! }
    //! ```
    Amplitude::new(name, ComplexScalar).into()
}

/// A [`Node`] for computing a single complex value from two input parameters in polar form.
///
/// This struct implements [`Node`] to generate a complex value from two input parameters called
/// `mag` and `phi`.
///
/// # Parameters:
///
/// - `mag`: The magnitude of the complex scalar.
/// - `phi`: The phase of the complex scalar.
pub struct PolarComplexScalar;
impl Node for PolarComplexScalar {
    fn calculate(&self, parameters: &[f64], _event: &Event) -> Result<Complex64, RustitudeError> {
        Ok(parameters[0] * Complex64::cis(parameters[1]))
    }

    fn parameters(&self) -> Vec<String> {
        vec!["mag".to_string(), "phi".to_string()]
    }
}

pub fn pcscalar(name: &str) -> AmpOp {
    //! Creates a named [`PolarComplexScalar`].
    //!
    //! This is a convenience method to generate an [`AmpOp`] which represents a complex
    //! value determined by two parameters, `real` and `imag`.
    //!
    //! # Examples
    //!
    //! Basic usage:
    //!
    //! ```
    //! use rustitude_core::prelude::*;
    //! let my_pcscalar = pcscalar("MyPolarComplexScalar");
    //! if let AmpOp::Amplitude(amp) = my_pcscalar {
    //!     assert_eq!(amp.node.read().parameters(), vec!["mag".to_string(), "phi".to_string()]);
    //! }
    //! ```
    Amplitude::new(name, PolarComplexScalar).into()
}

/// A generic struct which can be used to create any kind of piecewise function.
pub struct Piecewise<F>
where
    F: Fn(&Event) -> f64 + Send + Sync + Copy,
{
    edges: Vec<(f64, f64)>,
    variable: F,
    calculated_variable: Vec<f64>,
}

impl<F> Piecewise<F>
where
    F: Fn(&Event) -> f64 + Send + Sync + Copy,
{
    /// Create a new [`Piecewise`] struct from a number of bins, a range of values, and a callable
    /// which defines a variable over the [`Event`]s in a [`Dataset`].
    pub fn new(bins: usize, range: (f64, f64), variable: F) -> Self {
        let diff = (range.1 - range.0) / (bins as f64);
        let edges = (0..bins)
            .map(|i| {
                (
                    (i as f64).mul_add(diff, range.0),
                    ((i + 1) as f64).mul_add(diff, range.0),
                )
            })
            .collect();
        Self {
            edges,
            variable,
            calculated_variable: Vec::default(),
        }
    }
}

impl<F> Node for Piecewise<F>
where
    F: Fn(&Event) -> f64 + Send + Sync + Copy,
{
    fn precalculate(&mut self, dataset: &Dataset) -> Result<(), RustitudeError> {
        self.calculated_variable = dataset
            .events
            .read()
            .par_iter()
            .map(self.variable)
            .collect();
        Ok(())
    }

    fn calculate(&self, parameters: &[f64], event: &Event) -> Result<Complex64, RustitudeError> {
        let val = self.calculated_variable[event.index];
        let opt_i_bin = self.edges.iter().position(|&(l, r)| val >= l && val <= r);
        opt_i_bin.map_or_else(
            || Ok(Complex64::default()),
            |i_bin| {
                Ok(Complex64::new(
                    parameters[i_bin * 2],
                    parameters[(i_bin * 2) + 1],
                ))
            },
        )
    }

    fn parameters(&self) -> Vec<String> {
        (0..self.edges.len())
            .flat_map(|i| vec![format!("bin {} re", i), format!("bin {} im", i)])
            .collect()
    }
}

pub fn piecewise_m(name: &str, bins: usize, range: (f64, f64)) -> AmpOp {
    //! Creates a named [`Piecewise`] amplitude with the resonance mass as the binning variable.
    Amplitude::new(
        name,
        Piecewise::new(bins, range, |e: &Event| {
            (e.daughter_p4s[0] + e.daughter_p4s[1]).m()
        }),
    )
    .into()
}