rustiq_core/structures/
pauli_set.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
use super::pauli::Pauli;
use super::pauli_like::PauliLike;
use itertools::izip;
use std::cmp::max;
use std::fmt;

const WIDTH: usize = 64;

fn get_stride(index: usize) -> usize {
    return index / WIDTH;
}

fn get_offset(index: usize) -> usize {
    return index % WIDTH;
}

/// A set of Pauli operators (module global phase)
/// Conjugation by Clifford gates are vectorized
#[derive(Clone, Debug, PartialEq)]
pub struct PauliSet {
    pub n: usize,
    nstrides: usize,
    noperators: usize,
    start_offset: usize,
    /// The X and Z parts of the Pauli operators (in row major)
    /// The X part spans the first `n` rows and the Z part spans the last `n` rows
    data_array: Vec<Vec<u64>>,
    phases: Vec<u64>,
}

impl PauliSet {
    /// Allocate an empty set of n-qubit Pauli operators
    pub fn new(n: usize) -> Self {
        Self {
            n,
            nstrides: 0,
            noperators: 0,
            start_offset: 0,
            data_array: vec![Vec::new(); 2 * n],
            phases: Vec::new(),
        }
    }
    /// Allocate a set of m n-qubit Pauli operators set to the identity
    pub fn new_empty(n: usize, m: usize) -> Self {
        let nstrides = get_stride(m) + 1;
        Self {
            n,
            nstrides,
            noperators: m,
            start_offset: 0,
            data_array: vec![vec![0; nstrides]; 2 * n],
            phases: vec![0; nstrides],
        }
    }
    // Construction from a list of operators
    pub fn from_slice(data: &[String]) -> Self {
        if data.len() == 0 {
            return Self::new(0);
        }
        let n = data.first().unwrap().len();
        let mut pset = Self::new(n);
        for piece in data {
            pset.insert(piece, false);
        }
        return pset;
    }
    /// Returns the number of operators stored in the set
    pub fn len(&self) -> usize {
        return self.noperators;
    }
    /// Inserts a new Pauli operator in the set and returns its index
    pub fn insert(&mut self, axis: &str, phase: bool) -> usize {
        let stride = get_stride(self.noperators + self.start_offset);
        let offset = get_offset(self.noperators + self.start_offset);
        if stride == self.nstrides {
            self.nstrides += 1;
            self.data_array.iter_mut().for_each(|row| row.push(0));
            self.phases.push(0);
        }
        // Setting the phase
        if phase {
            self.phases[stride] |= 1 << offset;
        }
        // Setting the operator
        for (index, pauli) in axis.chars().enumerate() {
            match pauli {
                'Z' => {
                    self.data_array[index + self.n][stride] =
                        self.data_array[index + self.n][stride] | (1 << offset)
                }
                'X' => {
                    self.data_array[index][stride] = self.data_array[index][stride] | (1 << offset)
                }
                'Y' => {
                    self.data_array[index][stride] = self.data_array[index][stride] | (1 << offset);
                    self.data_array[index + self.n][stride] =
                        self.data_array[index + self.n][stride] | (1 << offset)
                }
                _ => {}
            }
        }
        self.noperators += 1;
        return self.noperators - 1;
    }

    /// Inserts a new Pauli operator described as a vector of bool in the set and returns its index
    pub fn insert_vec_bool(&mut self, axis: &Vec<bool>, phase: bool) -> usize {
        let stride = get_stride(self.noperators + self.start_offset);
        let offset = get_offset(self.noperators + self.start_offset);
        if stride == self.nstrides {
            self.nstrides += 1;
            self.data_array.iter_mut().for_each(|row| row.push(0));
            self.phases.push(0);
        }
        if phase {
            self.phases[stride] |= 1 << offset;
        }
        for (index, value) in axis.iter().enumerate() {
            if *value {
                self.data_array[index][stride] |= 1 << offset;
            }
        }
        self.noperators += 1;
        return self.noperators - 1;
    }
    pub fn insert_pauli(&mut self, pauli: &Pauli) -> usize {
        self.insert_vec_bool(&pauli.data, pauli.phase == 2)
    }
    pub fn set_phase(&mut self, col: usize, phase: bool) {
        let stride = get_stride(col);
        let offset = get_offset(col);
        if phase != ((self.phases[stride] >> offset & 1) != 0) {
            self.phases[stride] ^= 1 << offset;
        }
    }

    pub fn set_entry(&mut self, operator_index: usize, qbit: usize, x_part: bool, z_part: bool) {
        let stride = get_stride(operator_index + self.start_offset);
        let offset = get_offset(operator_index + self.start_offset);
        if x_part != (1 == (self.data_array[qbit][stride] >> offset) & 1) {
            self.data_array[qbit][stride] ^= 1 << offset;
        }
        if z_part != (1 == (self.data_array[qbit + self.n][stride] >> offset) & 1) {
            self.data_array[qbit + self.n][stride] ^= 1 << offset;
        }
    }
    pub fn set_raw_entry(&mut self, row: usize, col: usize, value: bool) {
        let stride = get_stride(col);
        let offset = get_offset(col);
        if value != (1 == (self.data_array[row][stride] >> offset) & 1) {
            self.data_array[row][stride] ^= 1 << offset;
        }
    }

    /// Clears the data of the Pauli set
    pub fn clear(&mut self) {
        for j in 0..self.nstrides {
            for i in 0..2 * self.n {
                self.data_array[i][j] = 0;
            }
            self.phases[j] = 0;
        }
        self.noperators = 0;
        self.start_offset = 0;
    }
    /// Pops the first rotation in the set
    pub fn pop(&mut self) {
        let stride = get_stride(self.start_offset);
        let offset = get_offset(self.start_offset);
        for i in 0..2 * self.n {
            self.data_array[i][stride] &= !(1 << offset);
        }
        self.phases[stride] &= !(1 << offset);
        self.start_offset += 1;
        self.noperators -= 1;
    }
    /// Pops the last rotation in the set
    pub fn pop_last(&mut self) {
        let stride = get_stride(self.start_offset + self.noperators - 1);
        let offset = get_offset(self.start_offset + self.noperators - 1);
        for i in 0..2 * self.n {
            self.data_array[i][stride] &= !(1 << offset);
        }
        self.phases[stride] &= !(1 << offset);
        self.noperators -= 1;
    }
    /// Set some operator to identity (because popping in the middle is expensive :O)
    pub fn set_to_identity(&mut self, operator_index: usize) {
        // set_entry(&mut self, operator_index: usize, qbit: usize, x_part: bool, z_part: bool)
        for i in 0..self.n {
            self.set_entry(operator_index, i, false, false);
        }
    }
    /// Get the operator at index `operator_index` as a pair (phase, string)
    pub fn get(&self, operator_index: usize) -> (bool, String) {
        let operator_index = operator_index + self.start_offset;
        let mut output = String::new();
        let stride = get_stride(operator_index);
        let offset = get_offset(operator_index);
        for i in 0..self.n {
            match (
                (self.data_array[i][stride] >> offset) & 1,
                (self.data_array[i + self.n][stride] >> offset) & 1,
            ) {
                (1, 0) => {
                    output += "X";
                }
                (0, 1) => {
                    output += "Z";
                }
                (1, 1) => {
                    output += "Y";
                }
                _ => {
                    output += "I";
                }
            }
        }
        (((self.phases[stride] >> offset) & 1 != 0), output)
    }

    /// Get the operator at index `operator_index` as a pair `(bool, Vec<bool>)`
    pub fn get_as_vec_bool(&self, operator_index: usize) -> (bool, Vec<bool>) {
        let operator_index = operator_index + self.start_offset;
        let mut output = Vec::new();
        let stride = get_stride(operator_index);
        let offset = get_offset(operator_index);
        for i in 0..2 * self.n {
            output.push(((self.data_array[i][stride] >> offset) & 1) != 0);
        }
        (((self.phases[stride] >> offset) & 1 != 0), output)
    }

    /// Get the operator at index `operator_index` as a `Pauli` object
    pub fn get_as_pauli(&self, operator_index: usize) -> Pauli {
        let (phase, data) = self.get_as_vec_bool(operator_index);
        return Pauli::from_vec_bool(data, if phase { 2 } else { 0 });
    }
    /// Get a single entry of the PauliSet
    pub fn get_entry(&self, row: usize, col: usize) -> bool {
        let col = col + self.start_offset;
        let stride = get_stride(col);
        let offset = get_offset(col);
        return ((self.data_array[row][stride] >> offset) & 1) != 0;
    }
    pub fn get_phase(&self, col: usize) -> bool {
        let col = col + self.start_offset;
        let stride = get_stride(col);
        let offset = get_offset(col);
        return ((self.phases[stride] >> offset) & 1) != 0;
    }

    pub fn get_i_factors(&self) -> Vec<u8> {
        let mut output = Vec::new();
        for i in 0..self.len() {
            let mut ifact: u8 = 0;
            for j in 0..self.n {
                if self.get_entry(j, i) & self.get_entry(j + self.n, i) {
                    ifact += 1;
                }
            }
            output.push(ifact % 4);
        }
        output
    }
    pub fn get_i_factors_single_col(&self, col: usize) -> u8 {
        let mut ifact: u8 = 0;
        for j in 0..self.n {
            if self.get_entry(j, col) & self.get_entry(j + self.n, col) {
                ifact += 1;
            }
        }
        return ifact % 4;
    }
    /// Get the inverse Z output of the tableau (assuming the PauliSet is a Tableau, i.e. has exactly 2n operators storing X1...Xn Z1...Zn images)
    pub fn get_inverse_z(&self, qbit: usize) -> (bool, String) {
        let mut pstring = String::new();
        for i in 0..self.n {
            let x_bit = self.get_entry(qbit, i + self.n);
            let z_bit = self.get_entry(qbit, i);
            match (x_bit, z_bit) {
                (false, false) => {
                    pstring.push('I');
                }
                (true, false) => {
                    pstring.push('X');
                }
                (false, true) => {
                    pstring.push('Z');
                }
                (true, true) => {
                    pstring.push('Y');
                }
            }
        }
        return (self.get_phase(qbit + self.n), pstring);
    }
    /// Get the inverse X output of the tableau (assuming the PauliSet is a Tableau, i.e. has exactly 2n operators storing X1...Xn Z1...Zn images)
    pub fn get_inverse_x(&self, qbit: usize) -> (bool, String) {
        let mut pstring = String::new();
        let mut cy = 0;
        for i in 0..self.n {
            let x_bit = self.get_entry(qbit + self.n, i + self.n);
            let z_bit = self.get_entry(qbit + self.n, i);
            match (x_bit, z_bit) {
                (false, false) => {
                    pstring.push('I');
                }
                (true, false) => {
                    pstring.push('X');
                }
                (false, true) => {
                    pstring.push('Z');
                }
                (true, true) => {
                    pstring.push('Y');
                    cy += 1;
                }
            }
        }
        return ((cy % 2 != 0), pstring);
    }

    /// Returns the sum mod 2 of the logical AND of a row with an external vector of booleans
    pub fn and_row_acc(&self, row: usize, vec: &Vec<bool>) -> bool {
        let mut output = false;
        for i in 0..2 * self.n {
            output ^= self.get_entry(row, i) & vec[i];
        }
        output
    }

    /// Check equality between two operators
    pub fn equals(&self, i: usize, j: usize) -> bool {
        let (_, vec1) = self.get_as_vec_bool(i);
        let (_, vec2) = self.get_as_vec_bool(j);
        return vec1 == vec2;
    }

    /// Checks if two operators in the set commute
    pub fn commute(&self, i: usize, j: usize) -> bool {
        let (_, vec1) = self.get_as_vec_bool(i);
        let (_, vec2) = self.get_as_vec_bool(j);
        let mut count_diff = 0;
        for k in 0..self.n {
            if (vec1[k] & vec2[k + self.n]) ^ (vec1[k + self.n] & vec2[k]) {
                count_diff += 1;
            }
        }
        return (count_diff % 2) == 0;
    }

    // Returns the support of the operator (i.e. the list of qbit indices on which the operator acts non trivially)
    pub fn get_support(&self, index: usize) -> Vec<usize> {
        let mut support = Vec::new();
        let index = index + self.start_offset;
        let stride = get_stride(index);
        let offset = get_offset(index);
        for i in 0..self.n {
            if (((self.data_array[i][stride] | self.data_array[i + self.n][stride]) >> offset) & 1)
                != 0
            {
                support.push(i);
            }
        }
        support
    }

    /// Returns the support size of the operator (i.e. the number of non-I Pauli term in the operator)
    pub fn support_size(&self, index: usize) -> usize {
        let index = index + self.start_offset;
        let mut count = 0;
        let stride = get_stride(index);
        let offset = get_offset(index);
        for i in 0..self.n {
            if (((self.data_array[i][stride] | self.data_array[i + self.n][stride]) >> offset) & 1)
                != 0
            {
                count += 1;
            }
        }
        return count;
    }

    /*
           Internal methods
    */

    /// XORs row `i` into row `j`
    fn row_op(&mut self, i: usize, j: usize) {
        let (left, right) = self.data_array.split_at_mut(max(i, j));
        let (target_row, source_row) = if i < j {
            (right.get_mut(0).unwrap(), left.get(i).unwrap())
        } else {
            (left.get_mut(j).unwrap(), right.get(0).unwrap())
        };

        for (v1, v2) in source_row.iter().zip(target_row.iter_mut()) {
            *v2 ^= *v1;
        }
    }

    pub fn swap_qbits(&mut self, i: usize, j: usize) {
        self.data_array.swap(i, j);
        self.data_array.swap(self.n + i, self.n + j);
    }

    /// Offset the phases by the logical bitwise and of two target rows
    fn update_phase_and(&mut self, i: usize, j: usize) {
        for (v1, v2, phase) in izip!(
            self.data_array[i].iter(),
            self.data_array[j].iter(),
            self.phases.iter_mut()
        ) {
            *phase ^= *v1 & *v2;
        }
    }

    /// Same thing as `update_phase_and` but computes the and of 4 rows instead
    fn update_phase_and_many(&mut self, i: usize, j: usize, k: usize, l: usize) {
        for (v1, v2, v3, v4, phase) in izip!(
            self.data_array[i].iter(),
            self.data_array[j].iter(),
            self.data_array[k].iter(),
            self.data_array[l].iter(),
            self.phases.iter_mut()
        ) {
            *phase ^= *v1 & *v2 & *v3 & *v4;
        }
    }

    /*
       Gate conjugation
    */

    /*
       Metrics for synthesis algorithms
    */
    pub fn count_id(&self, qbit: usize) -> usize {
        let mut count: usize = 0;
        let nstart_stride = get_stride(self.start_offset);
        for ns in nstart_stride..self.nstrides {
            let r_x = self.data_array[qbit][ns];
            let r_z = self.data_array[qbit + self.n][ns];
            let value = r_x | r_z;
            count += value.trailing_zeros() as usize;
            if ns == nstart_stride {
                count -= self.start_offset;
            }
            if ns == self.nstrides - 1 {
                if value == 0 {
                    count -= 64 - get_offset(self.start_offset + self.noperators);
                }
            }
            if value != 0 {
                return count;
            }
        }
        return count;
    }
    /// Sorts the set by support size
    pub fn support_size_sort(&mut self) {
        // We first build the "transpose" of data_array (cheaper this way)
        let mut transposed: Vec<(bool, Vec<bool>)> = (0..self.noperators)
            .map(|i| self.get_as_vec_bool(i))
            .collect();
        // We sort the operators by support size
        transposed.sort_by_key(|(_, vec)| {
            (0..self.n)
                .map(|i| if vec[i] | vec[i + self.n] { 1 } else { 0 })
                .sum::<i32>()
        });
        // We clear the set
        self.clear();
        // And insert everybody back in place
        for (phase, axis) in transposed {
            self.insert_vec_bool(&axis, phase);
        }
    }
}

impl fmt::Display for PauliSet {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for i in 0..self.len() {
            let (phase, string) = self.get(i);
            write!(f, "{}{}\n", if phase { "-" } else { "+" }, string)?;
        }
        write!(f, "\n")
    }
}

impl PauliLike for PauliSet {
    /// Conjugate the set of rotations via a H gate
    fn h(&mut self, i: usize) {
        self.data_array.swap(i, i + self.n);
        self.update_phase_and(i, i + self.n);
    }
    /// Conjugate the set of rotations via a S gate
    fn s(&mut self, i: usize) {
        self.update_phase_and(i, i + self.n);
        self.row_op(i, i + self.n);
    }
    /// Conjugate the set of rotations via a S dagger gate
    fn sd(&mut self, i: usize) {
        self.row_op(i, i + self.n);
        self.update_phase_and(i, i + self.n);
    }
    /// Conjugate the set of rotations via a SQRT_X gate
    fn sqrt_x(&mut self, i: usize) {
        self.row_op(i + self.n, i);
        self.update_phase_and(i, i + self.n);
    }
    /// Conjugate the set of rotations via a SQRT_X dagger gate
    fn sqrt_xd(&mut self, i: usize) {
        self.update_phase_and(i, i + self.n);
        self.row_op(i + self.n, i);
    }
    /// Conjugate the set of rotations via a CNOT gate
    fn cnot(&mut self, i: usize, j: usize) {
        self.update_phase_and_many(i, j, i + self.n, j + self.n);
        self.row_op(j + self.n, i + self.n);
        self.row_op(i, j);
        self.update_phase_and_many(i, j, i + self.n, j + self.n);
    }
}

#[cfg(test)]
mod pauli_set_tests {
    use super::*;

    #[test]
    fn construction() {
        let pset = PauliSet::new(10);
        assert_eq!(pset.data_array.len(), 20);
        assert_eq!(pset.n, 10);
        assert_eq!(pset.nstrides, 0);
        assert_eq!(pset.noperators, 0);
    }

    #[test]
    fn insertion() {
        let mut pset = PauliSet::new(4);
        pset.insert(&"XYZI", false);
        assert_eq!(pset.data_array.len(), 8);
        assert_eq!(pset.n, 4);
        assert_eq!(pset.nstrides, 1);
        assert_eq!(pset.noperators, 1);
        assert_eq!(pset.data_array[0][0], 1);
        assert_eq!(pset.data_array[1][0], 1);
        assert_eq!(pset.data_array[2][0], 0);
        assert_eq!(pset.data_array[3][0], 0);

        assert_eq!(pset.data_array[4][0], 0);
        assert_eq!(pset.data_array[5][0], 1);
        assert_eq!(pset.data_array[6][0], 1);
        assert_eq!(pset.data_array[7][0], 0);
    }

    #[test]
    fn get() {
        let mut pset = PauliSet::new(4);
        pset.insert(&"XYZI", false);
        assert_eq!(pset.get(0), (false, "XYZI".to_owned()));
    }

    #[test]
    fn h_test() {
        let mut pset = PauliSet::new(1);
        pset.insert(&"X", false);
        pset.insert(&"Z", false);
        pset.insert(&"Y", false);
        pset.insert(&"I", false);

        pset.h(0);

        assert_eq!(pset.get(0), (false, "Z".to_owned()));
        assert_eq!(pset.get(1), (false, "X".to_owned()));
        assert_eq!(pset.get(2), (true, "Y".to_owned()));
        assert_eq!(pset.get(3), (false, "I".to_owned()));
    }

    #[test]
    fn s_test() {
        let mut pset = PauliSet::new(1);
        pset.insert(&"X", false);
        pset.insert(&"Z", false);
        pset.insert(&"Y", false);
        pset.insert(&"I", false);

        pset.s(0);

        assert_eq!(pset.get(0), (false, "Y".to_owned()));
        assert_eq!(pset.get(1), (false, "Z".to_owned()));
        assert_eq!(pset.get(2), (true, "X".to_owned()));
        assert_eq!(pset.get(3), (false, "I".to_owned()));
    }

    #[test]
    fn sqrt_x_test() {
        let mut pset = PauliSet::new(1);
        pset.insert(&"X", false);
        pset.insert(&"Z", false);
        pset.insert(&"Y", false);
        pset.insert(&"I", false);

        pset.sqrt_x(0);

        assert_eq!(pset.get(0), (false, "X".to_owned()));
        assert_eq!(pset.get(1), (true, "Y".to_owned()));
        assert_eq!(pset.get(2), (false, "Z".to_owned()));
        assert_eq!(pset.get(3), (false, "I".to_owned()));
    }
    // TODO:write this test :'(
    #[test]
    fn cnot_test() {
        const INPUTS: [&str; 16] = [
            "II", "IX", "IY", "IZ", "XI", "XX", "XY", "XZ", "YI", "YX", "YY", "YZ", "ZI", "ZX",
            "ZY", "ZZ",
        ];
        const OUTPUTS: [(bool, &str); 16] = [
            (false, "II"),
            (false, "IX"),
            (false, "ZY"),
            (false, "ZZ"),
            (false, "XX"),
            (false, "XI"),
            (false, "YZ"),
            (true, "YY"),
            (false, "YX"),
            (false, "YI"),
            (true, "XZ"),
            (false, "XY"),
            (false, "ZI"),
            (false, "ZX"),
            (false, "IY"),
            (false, "IZ"),
        ];
        for (ins, (phase, outs)) in INPUTS.iter().zip(OUTPUTS.iter()) {
            let mut pset = PauliSet::new(2);
            pset.insert(ins, false);
            pset.cnot(0, 1);
            assert_eq!(pset.get(0), (*phase, (*outs).to_owned()));
        }
    }

    #[test]
    fn support_size_test() {
        let mut pset = PauliSet::new(4);
        pset.insert(&"XYIZ", false);
        pset.insert(&"XYII", false);
        pset.insert(&"IYIZ", false);
        pset.insert(&"IIII", false);
        assert_eq!(pset.support_size(0), 3);
        assert_eq!(pset.support_size(1), 2);
        assert_eq!(pset.support_size(2), 2);
        assert_eq!(pset.support_size(3), 0);
    }
    #[test]
    fn count_id() {
        let mut pset = PauliSet::new(5);
        pset.insert(&"IIIII", false);
        pset.insert(&"XIIII", false);
        pset.insert(&"XXIII", false);
        pset.insert(&"XXXII", false);
        pset.insert(&"XXXXI", false);
        for i in 0..5 {
            assert_eq!(pset.count_id(i), i + 1);
        }
    }
    #[test]
    fn sort_test() {
        let mut pset = PauliSet::new(4);
        pset.insert(&"IIII", false);
        pset.insert(&"XXII", false);
        pset.insert(&"XXXX", false);
        pset.insert(&"XIII", false);
        pset.insert(&"XXXI", false);
        pset.support_size_sort();
        assert_eq!(pset.get(0), (false, "IIII".to_owned()));
        assert_eq!(pset.get(1), (false, "XIII".to_owned()));
        assert_eq!(pset.get(2), (false, "XXII".to_owned()));
        assert_eq!(pset.get(3), (false, "XXXI".to_owned()));
        assert_eq!(pset.get(4), (false, "XXXX".to_owned()));
    }
    #[test]
    fn pop_test() {
        let mut pset = PauliSet::new(1);
        pset.insert(&"I", false);
        pset.insert(&"X", false);
        assert_eq!(pset.noperators, 2);
        pset.pop();
        assert_eq!(pset.noperators, 1);
        assert_eq!(pset.start_offset, 1);
        assert_eq!(pset.get(0), (false, "X".to_owned()));
    }
    #[test]
    fn commute_test() {
        let mut pset = PauliSet::new(2);
        pset.insert(&"ZI", false);
        pset.insert(&"XI", false);
        pset.insert(&"ZZ", false);
        pset.insert(&"XX", false);
        pset.insert(&"YY", false);
        assert!(pset.commute(0, 2));
        assert!(!pset.commute(0, 1));
        assert!(pset.commute(2, 3));
        assert!(pset.commute(2, 4));
        assert!(pset.commute(3, 4));
        assert!(pset.commute(1, 3));
    }
}