rustiq_core/structures/
hardware.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
use petgraph::algo::{bellman_ford, min_spanning_tree};
use petgraph::data::FromElements;
use petgraph::prelude::*;
use petgraph::Graph;
use std::collections::HashMap;

fn convert_shortest_paths(
    all_paths: &Vec<bellman_ford::Paths<NodeIndex, f64>>,
    nodes: &Vec<NodeIndex>,
) -> Vec<Vec<(usize, Vec<usize>)>> {
    let mut my_paths: Vec<Vec<(usize, Vec<usize>)>> = Vec::new();
    for n1 in nodes.iter() {
        my_paths.push(Vec::new());
        for n2 in nodes.iter() {
            let path = get_shortest_path(all_paths, n1, n2);
            my_paths.last_mut().unwrap().push((path.len() - 1, path));
        }
    }
    my_paths
}

fn get_shortest_path(
    all_paths: &Vec<bellman_ford::Paths<NodeIndex, f64>>,
    n1: &NodeIndex,
    n2: &NodeIndex,
) -> Vec<usize> {
    let path = &all_paths[n1.index()];
    let mut spath: Vec<usize> = Vec::new();
    spath.push(n2.index());
    let mut v = path.predecessors[n2.index()];
    while let Some(ni) = v {
        spath.push(ni.index());
        v = path.predecessors[ni.index()];
    }
    return spath;
}

fn build_closure_mst(
    all_paths: &Vec<Vec<(usize, Vec<usize>)>>,
    terminals: &Vec<usize>,
) -> Graph<(), f64, Undirected> {
    let mut g = Graph::new_undirected();
    let nodes: Vec<_> = (0..terminals.len()).map(|_| g.add_node(())).collect();

    for (i1, n1) in nodes.iter().enumerate() {
        for (i2, n2) in nodes.iter().enumerate() {
            if i1 != i2 {
                g.add_edge(*n1, *n2, all_paths[terminals[i1]][terminals[i2]].0 as f64);
            }
        }
    }
    let mst: Graph<(), f64, Undirected> = Graph::from_elements(min_spanning_tree(&g));
    mst
}

#[derive(Debug, Clone)]
pub struct SteinerTree {
    pub graph: UnGraph<(), i32, u32>,
    pub mapping: HashMap<usize, NodeIndex>,
    pub inverse_mapping: HashMap<NodeIndex, usize>,
    pub terminals: Vec<usize>,
}

impl SteinerTree {
    pub fn len(&self) -> usize {
        self.graph.node_count()
    }

    pub fn cnot_cost(&self) -> usize {
        return 2 * self.len() - self.terminals.len() - 1;
    }

    pub fn contains(&self, node: usize) -> bool {
        self.mapping.get(&node).is_some()
    }
    pub fn is_leaf(&self, node: usize) -> bool {
        let node_index = self.mapping.get(&node).unwrap();
        self.graph.neighbors_undirected(*node_index).count() == 1
    }
    pub fn neighbors(&self, node: usize) -> Vec<usize> {
        let mut neighs = Vec::new();
        for nei in self.graph.neighbors_undirected(self.mapping[&node]) {
            neighs.push(self.inverse_mapping[&nei]);
        }
        neighs
    }
    pub fn nodes(&self) -> Vec<usize> {
        self.mapping.keys().map(|k| *k).collect()
    }
    pub fn add_node(&mut self, node: usize) {
        let node_index = self.graph.add_node(());
        self.mapping.insert(node, node_index);
        self.inverse_mapping.insert(node_index, node);
    }

    pub fn add_edge(&mut self, n1: usize, n2: usize) {
        self.graph.add_edge(self.mapping[&n1], self.mapping[&n2], 1);
    }

    pub fn remove_node(&mut self, node: usize) {
        if !self.contains(node) {
            panic!("Node {} is not in the tree", node);
        }
        let last_index: NodeIndex<u32> = NodeIndex::new(self.graph.node_count() - 1);
        let node_index = self.mapping.get(&node).unwrap().clone();
        let i = self.inverse_mapping.get(&last_index).unwrap().clone();
        if i == node {
            self.graph.remove_node(node_index);
            self.mapping.remove(&i);
            self.inverse_mapping.remove(&node_index);
            return;
        }
        self.inverse_mapping.remove(&last_index);
        self.mapping.remove(&node);
        self.mapping.insert(i, node_index);
        self.inverse_mapping.insert(node_index, i);
        self.graph.remove_node(node_index);
    }

    pub fn update_tree(&mut self, new_support: &Vec<usize>, qbits: &[usize; 2]) {
        self.terminals = new_support.clone();
        if self.contains(qbits[0]) && self.contains(qbits[1]) {
            if new_support.contains(&qbits[0]) && new_support.contains(&qbits[1]) {
                return;
            }
            if !new_support.contains(&qbits[0]) && self.is_leaf(qbits[0]) {
                self.remove_node(qbits[0]);
            }
            if !new_support.contains(&qbits[1]) && self.is_leaf(qbits[1]) {
                self.remove_node(qbits[1]);
            }
            return;
        }

        if !self.contains(qbits[0]) && new_support.contains(&qbits[0]) {
            self.add_node(qbits[0]);
            self.add_edge(qbits[0], qbits[1]);
            return;
        }

        if !self.contains(qbits[1]) && new_support.contains(&qbits[1]) {
            self.add_node(qbits[1]);
            self.add_edge(qbits[0], qbits[1]);
            return;
        }
        return;
    }
    pub fn prune_non_terminal_leaves(&mut self) {
        loop {
            let mut popped = false;
            for node in self.graph.node_indices() {
                if !self.terminals.contains(&self.inverse_mapping[&node])
                    && self.graph.neighbors(node).count() == 1
                {
                    self.remove_node(self.inverse_mapping[&node]);
                    popped = true;
                    break;
                }
            }
            if !popped {
                break;
            }
        }
    }
}

fn build_steiner_from_mst(
    closure_mst: &Graph<(), f64, Undirected>,
    terminals: &Vec<usize>,
    all_paths: &Vec<Vec<(usize, Vec<usize>)>>,
) -> SteinerTree {
    // Building the extended mst
    let mut g = Graph::new_undirected();
    let mut nodes = HashMap::new();
    let mut inverse_map = HashMap::new();
    for i in terminals.iter() {
        let nodei = g.add_node(());
        nodes.insert(*i, nodei);
        inverse_map.insert(nodei, *i);
    }
    for edge in closure_mst.raw_edges() {
        let t1 = terminals[edge.source().index()];
        let t2 = terminals[edge.target().index()];
        let (_, path) = &all_paths[t1][t2];
        for i in path.iter() {
            if !nodes.contains_key(i) {
                let nodei = g.add_node(());
                nodes.insert(*i, nodei);
                inverse_map.insert(nodei, *i);
            }
        }
        let mut left = path[0];
        for next_v in path.iter().skip(1) {
            g.add_edge(nodes[&left], nodes[next_v], 1);
            left = *next_v;
        }
    }
    let mst: Graph<(), i32, Undirected> = Graph::from_elements(min_spanning_tree(&g));
    let mut as_st = SteinerTree {
        graph: mst,
        mapping: nodes,
        inverse_mapping: inverse_map,
        terminals: terminals.clone(),
    };
    as_st.prune_non_terminal_leaves();
    return as_st;
}

fn get_steiner_tree(
    conv_paths: &Vec<Vec<(usize, Vec<usize>)>>,
    terminals: &Vec<usize>,
) -> SteinerTree {
    let closure = build_closure_mst(&conv_paths, &terminals);
    return build_steiner_from_mst(&closure, terminals, &conv_paths);
}
#[derive(Debug, Clone)]
pub struct HardwareGraph {
    pub graph: UnGraph<(), f64, u32>,
    shortest_paths: Vec<Vec<(usize, Vec<usize>)>>,
}

impl HardwareGraph {
    pub fn from_couplings(couplings: &Vec<(usize, usize)>) -> Self {
        let mut graph = UnGraph::new_undirected();
        let n = couplings.iter().map(|c| c.0.max(c.1)).max().unwrap() + 1;
        let nodes: Vec<_> = (0..n).map(|_| graph.add_node(())).collect();
        graph.extend_with_edges(couplings.iter().map(|c| (nodes[c.0], nodes[c.1], 1.)));
        let all_paths: Vec<bellman_ford::Paths<NodeIndex, f64>> = nodes
            .iter()
            .map(|node_index| bellman_ford(&graph, *node_index).unwrap())
            .collect();
        let shortest_paths = convert_shortest_paths(&all_paths, &nodes);
        Self {
            graph,
            shortest_paths,
        }
    }
    pub fn len(&self) -> usize {
        return self.graph.node_count();
    }
    pub fn get_steiner_tree(&self, terminals: &Vec<usize>) -> SteinerTree {
        get_steiner_tree(&self.shortest_paths, terminals)
    }
}