rustics/hier.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
//
// This code is available under the Berkeley 2-Clause, Berkely 2-clause,
// and MIT licenses. It is also available as public domain source where
// permitted by law.
//
use super::Rustics;
use super::PrinterBox;
use super::PrinterOption;
use super::TimerBox;
use super::window::Window;
use std::cell::RefCell;
use std::rc::Rc;
use std::any::Any;
pub type MemberRc = Rc<RefCell<dyn HierMember >>;
pub type GeneratorRc = Rc<RefCell<dyn HierGenerator>>;
pub type ExporterRc = Rc<RefCell<dyn HierExporter >>;
#[derive(Clone)]
pub struct HierDescriptor {
dimensions: Vec<HierDimension>,
auto_next: i64,
}
impl HierDescriptor {
pub fn new(dimensions: Vec<HierDimension>, auto_next: Option<i64>) -> HierDescriptor {
let auto_next = auto_next.unwrap_or(0);
if auto_next < 0 {
panic!("HierDescriptor::new: The auto_next value can't be negative.");
}
HierDescriptor { dimensions, auto_next }
}
}
// This struct is used to describe one level of the statistics
// hierarchy. "period" specifies the number of pushes into this
// window before a sum statistic is pushed to the upper level.
//
// "retention" specifies the total number of statistics to keep
// around for queries. It must be at least "period" elements, but
// can be more to keep more history.
#[derive(Clone, Copy)]
pub struct HierDimension {
period: usize, // the number of statistics to be summed for the next level
retention: usize, // the number of statistics to retain for queries.
}
impl HierDimension {
pub fn new(period: usize, retention: usize) -> HierDimension {
if retention < period {
panic!("HierDimension::new: The retention count must be at the period length.");
}
HierDimension { period, retention }
}
pub fn period(&self) -> usize {
self.period
}
pub fn retention(&self) -> usize {
self.retention
}
}
#[derive(Clone, Copy)]
pub struct HierIndex {
set: HierSet,
level: usize,
which: usize,
}
#[derive(Clone, Copy)]
pub enum HierSet {
All,
Live,
}
impl HierIndex {
pub fn new(set: HierSet, level: usize, which: usize) -> HierIndex {
HierIndex { set, level, which }
}
}
// The exporter needs to be downcasted to be used, so
// provide that interface.
pub trait HierExporter {
fn as_any (&self) -> &dyn Any;
fn as_any_mut(&mut self) -> &mut dyn Any;
}
pub trait HierTraverser {
fn visit(&mut self, member: &mut dyn Rustics);
}
//
// HierGenerator is implemented for a type implementing
// Rustics. This interfaces with the struct Hier coder
// to provide hierarchical statistics. This trait
// provides functions needed by the Hier code that are
// not bound to a specific instance of a Rustics object,
// and so can't be in trait Rustics. It is an abstraction
// and extension of the impl code of the type that
// implements Rustics. For example, there is a
// HierGenerator implementation for the RunningInteger
// type.
//
pub trait HierGenerator {
fn make_from_exporter(&self, name: &str, printer: PrinterBox, exports: ExporterRc) -> MemberRc;
fn make_member (&self, name: &str, printer: PrinterBox) -> MemberRc;
fn make_exporter (&self) -> ExporterRc;
fn push (&self, exports: ExporterRc, member: MemberRc);
}
//
// The HierMember trait is used to extend a specific object
// implementing the Rustics trait to work with the Hier
// type. The code for the Hier type and the HierGenerator
// just need to be able to upcast and downcast into the member types.
// It is thus a very rough abstraction of a Rustics struct.
// The as_any* function actually are available via the Rustics
// trait, but it's easier to use them without that step.
//
pub trait HierMember {
fn to_rustics (&self ) -> &dyn Rustics;
fn to_rustics_mut(&mut self) -> &mut dyn Rustics;
fn as_any (&self ) -> &dyn Any;
fn as_any_mut (&mut self) -> &mut dyn Any;
}
//
// This structure implements an implementation of hierarchical
// statistics using a HierGenerator object and HierMember
// structs.
//
pub struct Hier {
dimensions: Vec<HierDimension>,
generator: GeneratorRc,
stats: Vec<Window<MemberRc>>,
name: String,
title: String,
id: usize,
class: String,
auto_next: i64,
advance_count: i64,
event_count: i64,
printer: PrinterBox,
}
pub struct HierConfig {
pub descriptor: HierDescriptor,
pub generator: GeneratorRc,
pub class: String,
pub name: String,
pub title: String,
pub printer: PrinterBox,
}
impl Hier {
pub fn new(configuration: HierConfig) -> Hier {
let descriptor = configuration.descriptor;
let generator = configuration.generator;
let name = configuration.name;
let title = configuration.title;
let printer = configuration.printer;
let class = configuration.class;
let auto_next = descriptor.auto_next;
let dimensions = descriptor.dimensions;
let id = 0;
let advance_count = 0;
let event_count = 0;
let mut stats = Vec::with_capacity(dimensions.len());
//
// Create the set of windows that we use to hold all
// the actual statistics objects.
//
for dimension in &dimensions {
stats.push(Window::new(dimension.retention, dimension.period));
}
//
// Make the first statistics so that we are ready to record data.
//
let member = generator.borrow_mut().make_member(&name, printer.clone());
stats[0].push(member);
Hier {
dimensions, generator, stats,
name, title, id,
class, auto_next, advance_count,
event_count, printer
}
}
// Returns the newest statistic at the lowest level, which
// is the only statistic that records data. The other
// members are all read-only.
pub fn current(&self) -> MemberRc {
let member = self.stats[0].newest().unwrap();
member.clone()
}
// Print the given element in the statistics matrix.
pub fn print_index_opts(&self, index: HierIndex, printer: PrinterOption, title: Option<&str>) {
self.local_print(index, printer, title);
}
// Print all members in this object.
pub fn print_all(&self, printer: PrinterOption, title: Option<&str>) {
for i in 0..self.stats.len() {
let level = &self.stats[i];
for j in 0..level.all_len() {
let index = HierIndex::new(HierSet::All, i, j);
self.local_print(index, printer.clone(), title)
}
}
}
// Clear all the statistics from the windows. Reset the
// event and advance counters. Finally, push a new level 0
// statistic to receive data.
//
// This operation sets the struct back to its initial state.
pub fn clear_all(&mut self) {
self.advance_count = 0;
self.event_count = 0;
for i in 0..self.stats.len() {
let level = &self.stats[i];
for j in 0..level.all_len() {
let target = self.stats[i].index_all(j);
let mut target = target.unwrap().borrow_mut();
target.to_rustics_mut().clear();
}
}
}
// Provide a traverser for users to look at the that are live.
pub fn traverse_live(&mut self, traverser: &mut dyn HierTraverser) {
for level in &mut self.stats {
for member in level.iter_live() {
let mut borrow = member.borrow_mut();
let rustics = borrow.to_rustics_mut();
traverser.visit(rustics);
}
}
}
// Push a new level 0 statistics into the level 0 window.
// Update the upper levels as needed. The user can
// call this directly, use auto_advance, or do both.
pub fn advance(&mut self) {
// Increment the advance op count. This counts the
// number of statistics objects pushed, and thus tells
// us when we need to push a new higher-level object.
self.advance_count += 1;
// Now move up the stack.
let mut advance_point = 1;
let generator = self.generator.borrow();
// Check whether we have enough new objects at a given level
// to push a new sum of those statistics to a higher level.
for i in 0..self.dimensions.len() - 1 {
advance_point *= self.dimensions[i].period as i64;
if self.advance_count % advance_point == 0 {
let exporter = self.make_exporter(i);
let new_stat = generator.make_from_exporter(&self.name, self.printer.clone(), exporter);
self.stats[i + 1].push(new_stat);
} else {
break;
}
}
// Create the new statistic to collect data and push it into the
// level zero window.
let member = generator.make_member(&self.name, self.printer.clone());
self.stats[0].push(member);
}
pub fn live_len(&self, level: usize) -> usize {
self.stats[level].live_len()
}
pub fn all_len(&self, level: usize) -> usize {
self.stats[level].all_len()
}
// Return the total number of statistics events seen by
// all the statistics seen by this window since its
// create or the last clear_all invocation, whichever
// is later.
pub fn event_count(&self) -> i64 {
self.event_count
}
// Print one statistics object using the Rustics trait.
// We always append the indices to the title that is
// given.
fn local_print(&self, index: HierIndex, printer_opt: PrinterOption, title_opt: Option<&str>) {
let level = index.level;
let which = index.which;
let title =
if let Some(title) = title_opt {
title
} else {
&self.title
};
let set =
match index.set {
HierSet::Live => { "live" }
HierSet::All => { "all" }
};
let title = format!("{}[{}].{}[{}]", title, level, set, which);
let printer_box =
if let Some(printer) = printer_opt.clone() {
printer
} else {
self.printer.clone()
};
if level >= self.stats.len() {
let printer = &mut *printer_box.lock().unwrap();
printer.print(&title);
printer.print(&format!(" This configuration has only {} levels.", self.stats.len()));
return;
}
let target =
match index.set {
HierSet::Live => { self.stats[level].index_live(which) }
HierSet::All => { self.stats[level].index_all (which) }
};
let target =
if let Some(target) = target {
target
} else {
let printer = &mut *printer_box.lock().unwrap();
printer.print(&title);
printer.print(&format!(" That index ({}) is out of bounds.", which));
return;
};
// Downcast to the Rustics level and print.
let target = target.borrow();
target.to_rustics().print_opts(printer_opt, title_opt);
}
// Create an exporter for when we need to sum a group of
// statistics. The exporter accumulates the sums of all
// the data necessary for the actual Rustics implementation.
fn make_exporter(&self, level: usize) -> ExporterRc {
let generator = self.generator.borrow();
let exporter_rc = generator.make_exporter();
let level = &self.stats[level];
// Gather the statistics to sum.
for stat in level.iter_live() {
generator.push(exporter_rc.clone(), stat.clone());
}
exporter_rc
}
// Check the event count to see whether it's time to
// push a new level 0 statistics. This routine
// implements the auto_next feature.
fn check_and_advance(&mut self) {
// Push a new statistic if we've reached the event limit
// for the current one. Do this before push the next
// event so that users see an empty current statistic only
// before recording any events at all.
//
if
self.auto_next != 0
&& self.event_count > 0
&& self.event_count % self.auto_next == 0 {
self.advance();
}
// Advance the event count. This routine should only be
// called when a statistical value is being recorded.
self.event_count += 1;
}
}
// Implement the Rustics trait for the Hier object. It
// returns data mostly from the newest level 0 object,
// which is the only one receiving data.
impl Rustics for Hier {
fn record_i64(&mut self, value: i64) {
self.check_and_advance();
let member = self.stats[0].newest_mut().unwrap();
let mut borrow = member.borrow_mut();
let rustics = borrow.to_rustics_mut();
rustics.record_i64(value)
}
fn record_f64(&mut self, sample: f64) {
self.check_and_advance();
let current = self.current();
let mut borrow = current.borrow_mut();
let rustics = borrow.to_rustics_mut();
rustics.record_f64(sample);
}
fn record_event(&mut self) {
self.record_i64(1);
}
fn record_time(&mut self, sample: i64) {
self.check_and_advance();
let current = self.current();
let mut borrow = current.borrow_mut();
let rustics = borrow.to_rustics_mut();
rustics.record_time(sample);
}
fn record_interval(&mut self, timer: &mut TimerBox) {
self.check_and_advance();
let current = self.current();
let mut borrow = current.borrow_mut();
let rustics = borrow.to_rustics_mut();
rustics.record_interval(timer);
}
// We return the name and title of the Hier structure itself.
// We do the same for class, as well.
fn name(&self) -> String {
self.name.clone()
}
fn title(&self) -> String {
self.title.clone()
}
fn class(&self) -> &str {
&self.class
}
fn count(&self) -> u64 {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.count()
}
fn log_mode(&self) -> isize {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.log_mode()
}
fn mean(&self) -> f64 {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.mean()
}
fn standard_deviation(&self) -> f64 {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.standard_deviation()
}
fn variance(&self) -> f64 {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.variance()
}
fn skewness(&self) -> f64 {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.skewness()
}
fn kurtosis(&self) -> f64 {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.kurtosis()
}
fn int_extremes(&self) -> bool {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.int_extremes()
}
fn min_i64(&self) -> i64 {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.min_i64()
}
fn min_f64(&self) -> f64 {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.min_f64()
}
fn max_i64(&self) -> i64 {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.max_i64()
}
fn max_f64(&self) -> f64 {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.max_f64()
}
fn precompute(&mut self) {
let current = self.current();
let mut borrow = current.borrow_mut();
let rustics = borrow.to_rustics_mut();
rustics.precompute();
}
fn clear(&mut self) {
self.clear_all();
}
// Functions for printing
fn print(&self) {
let index = HierIndex::new(HierSet::Live, 0, self.live_len(0) - 1);
self.local_print(index, None, None);
}
fn print_opts(&self, printer: PrinterOption, title: Option<&str>) {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.print_opts(printer, title);
}
// The title is kept in the Hier object.
fn set_title(&mut self, title: &str) {
self.title = title.to_string();
}
fn set_id(&mut self, index: usize) {
self.id = index;
}
fn id(&self) -> usize {
self.id
}
fn equals(&self, other: &dyn Rustics) -> bool {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.equals(other)
}
fn generic(&self) -> &dyn Any {
self as &dyn Any
}
fn histo_log_mode(&self) -> i64 {
let current = self.current();
let borrow = current.borrow();
let rustics = borrow.to_rustics();
rustics.histo_log_mode()
}
}
#[cfg(test)]
pub mod tests {
use super::*;
use crate::stdout_printer;
use crate::integer_hier::IntegerHier;
use crate::integer_hier::IntegerHierConfig;
// Make a Hier struct for testing. The tests use the RunningInteger
// implementation via IntegerHier.
//
// Make a 4-level hierarchical statistic for testing.
pub fn make_hier(level_0_period: usize, auto_next: usize) -> Hier {
let levels = 4;
let dimension = HierDimension::new(level_0_period, 3 * level_0_period);
let mut dimensions = Vec::<HierDimension>::with_capacity(levels);
// Push the level 0 descriptor.
dimensions.push(dimension);
// Create a hierarchy. Use a period of 4 level at level 1,
// and just add 2 as we go up. This will keep all the
// periods distinct. We force the total window size to
// 3 times the period, which is fine for testing. That
// might become too costly in actual usage.
let mut period = 4;
for _i in 1..levels {
let dimension = HierDimension::new(period, 3 * period);
dimensions.push(dimension);
period += 2;
}
// Finish creating the Hier description structure. This
// just describes the windows and how the statistics
// structures are advanced.
let auto_next = Some(auto_next as i64);
let descriptor = HierDescriptor::new(dimensions, auto_next);
// Now create the RunningInteger-based Hier struct via
// IntegerHier, which does some of the work for
// us.
let name = "hier".to_string();
let title = "hier title".to_string();
let printer = stdout_printer();
// Finally, create the configuration description for the
// constructor.
let configuration =
IntegerHierConfig { descriptor, name, title, printer };
// Make the actual Hier structure. new_hier() handles the
// parameters specific for using RunningInteger statistics.
IntegerHier::new_hier(configuration)
}
fn compute_events_per_entry(hier_integer: &Hier, level: usize) -> i64 {
let mut result = hier_integer.auto_next as i64;
assert!(result > 0);
for i in 0..level {
result *= hier_integer.dimensions[i].period as i64;
}
result
}
fn roundup(value: i64, multiple: i64) -> i64 {
(((value + multiple - 1) / multiple)) * multiple
}
fn compute_len(hier_integer: &Hier, level: usize, set: HierSet, events: i64) -> usize {
assert!(events > 0);
let recorded_events =
if level == 0 {
let auto_next = hier_integer.auto_next as i64;
roundup(events, auto_next)
} else {
events - 1
};
let events_per_entry = compute_events_per_entry(&hier_integer, level);
let pushes = recorded_events / events_per_entry;
let period = hier_integer.dimensions[level].period as i64;
let size_limit = hier_integer.dimensions[level].retention as i64;
let mut length =
match set {
HierSet::Live => { std::cmp::min(pushes, period ) }
HierSet::All => { std::cmp::min(pushes, size_limit) }
};
if length == 0 && level == 0 {
length = 1;
}
length as usize
}
fn check_sizes(hier_integer: &Hier, events: i64, verbose: bool) {
for level in 0..hier_integer.stats.len() {
let expected_all_len = compute_len(hier_integer, level, HierSet::All, events);
let expected_live_len = compute_len(hier_integer, level, HierSet::Live, events);
let actual_all_len = hier_integer.stats[level].all_len();
let actual_live_len = hier_integer.stats[level].live_len();
if verbose {
println!("check_sizes: at level {}, events {}", level, events);
println!(" live {} == {}",
actual_live_len, expected_live_len);
println!(" all {} == {}",
actual_all_len, expected_all_len);
}
assert!(actual_all_len == expected_all_len );
assert!(actual_live_len == expected_live_len);
}
}
// This is a fairly straightforward test that just pushes a lot of
// values into a Hier struct. It is long because it takes a fair
// number of operations to force higer-level statistics into existence.
fn simple_hier_test() {
let auto_next = 4;
let level_0_period = 4;
let signed_auto = auto_next as i64;
let mut events = 0;
let mut sum_of_events = 0;
let mut hier_integer = make_hier(level_0_period, auto_next);
// Check that the struct matches our expectations.
let live_len = hier_integer.stats[0].live_len();
let all_len = hier_integer.stats[0].all_len();
let period = hier_integer.dimensions[0].period;
assert!(signed_auto == hier_integer.auto_next);
assert!(all_len == 1 );
assert!(live_len == 1 );
assert!(period == level_0_period );
let expected_count = auto_next as u64;
// Push one full window and see whether the data
// and structure matches what we expect as we
// record each event.
for i in 0..signed_auto {
hier_integer.record_i64(i);
events += 1;
sum_of_events += i;
if i < signed_auto - 1 {
let mean = sum_of_events as f64 / (i + 1) as f64;
let live_len_0 = hier_integer.stats[0].live_len();
let all_len_0 = hier_integer.stats[0].all_len();
let count = (i + 1) as u64;
assert!(all_len_0 == 1 );
assert!(live_len_0 == 1 );
assert!(hier_integer.count() == count);
assert!(hier_integer.min_i64() == 0 );
assert!(hier_integer.max_i64() == i );
assert!(hier_integer.mean() == mean );
check_sizes(&hier_integer, events, false);
}
}
let mean = sum_of_events as f64 / events as f64;
assert!(hier_integer.count() as i64 == signed_auto );
assert!(hier_integer.min_i64() == 0 );
assert!(hier_integer.max_i64() == signed_auto - 1);
assert!(hier_integer.mean() == mean );
check_sizes(&hier_integer, events, false);
println!("simple_hier_test: print 1 at {}", events);
hier_integer.print();
println!("simple_hier_test: print 1.5 at {}", events);
assert!(hier_integer.count() == events as u64);
let mut sum = 0;
for i in 0..signed_auto {
let value = signed_auto + i;
hier_integer.record_i64(value);
sum += value;
events += 1;
sum_of_events += value;
check_sizes(&hier_integer, events, false);
}
assert!(hier_integer.stats[0].all_len() == 2);
println!("simple_hier_test: print 2 at {}", events);
hier_integer.print();
let floating_window = signed_auto as f64;
let expected_mean = (sum as f64) / floating_window;
assert!(hier_integer.count() == expected_count );
assert!(hier_integer.min_i64() == signed_auto );
assert!(hier_integer.max_i64() == 2 * signed_auto - 1);
assert!(hier_integer.mean() == expected_mean );
// Record two windows worth of events and check that
// our size expectations are correct. Also, keep the
// sum of the last "window" of events so that we can
// check the mean. Only the lawt "window" events should
// be used to compute the mean.
let mut sum = 0;
for i in 0..2 * signed_auto {
let value = -i;
hier_integer.record_i64(value);
if i >= signed_auto {
sum += value;
}
events += 1;
sum_of_events += value;
check_sizes(&hier_integer, events, false);
}
println!("simple_hier_test: print 3 at {}", events);
hier_integer.print();
let expected_mean = sum as f64 / floating_window;
assert!(hier_integer.count() == expected_count );
assert!(hier_integer.min_i64() == -(2 * signed_auto - 1));
assert!(hier_integer.max_i64() == -signed_auto );
assert!(hier_integer.mean() == expected_mean );
// Now force a level 1 stat object.
for i in 0..(auto_next * level_0_period) as i64 {
hier_integer.record_i64(i);
hier_integer.record_i64(-i);
events += 2;
// sum_of_events += i + -i;
check_sizes(&hier_integer, events, false);
}
// Check that we have at least one level 1 object. This
// is a test of the test itself, for the most part.
let expected_len = compute_len(&hier_integer, 1, HierSet::All, events);
let actual_len = hier_integer.stats[1].all_len();
assert!(expected_len > 0);
assert!(actual_len == expected_len);
// Now force a level 2 statistics.
for i in 0..(auto_next * level_0_period / 2) as i64 {
hier_integer.record_i64(i);
events += 1;
sum_of_events += i;
check_sizes(&hier_integer, events, false);
}
for i in 0..(auto_next * level_0_period / 2) as i64 {
hier_integer.record_i64(i);
events += 1;
sum_of_events += i;
check_sizes(&hier_integer, events, false);
}
// Compute the expected mean once we force level 0 to
// be summed.
let expected_mean = sum_of_events as f64 / events as f64;
// Force the next push from level 0 by recording an event.
// This should produce a level 2 entry.
let value = 0;
hier_integer.record_i64(value);
events += 1;
sum_of_events += value;
let expected_len = compute_len(&hier_integer, 2, HierSet::All, events);
assert!(expected_len == 1);
// Check the length. Use a hardcode value, too, to check the
// sanity of the preceding code.
assert!(hier_integer.stats[2].all_len() == expected_len);
let stat_rc = hier_integer.stats[2].newest().unwrap();
let stat_borrow = stat_rc.borrow();
let stat = stat_borrow.to_rustics();
println!("simple_hier_test: print 4 at {}", events);
stat.print();
hier_integer.print_all(None, None);
assert!(stat.mean() == expected_mean);
println!("simple_hier_test: {} events, sum {}", events, sum_of_events);
}
struct TestTraverser {
count: i64,
}
impl TestTraverser {
pub fn new() -> TestTraverser {
let count = 0;
TestTraverser { count }
}
}
impl HierTraverser for TestTraverser {
fn visit(&mut self, _member: &mut dyn Rustics) {
self.count += 1;
}
}
// Shove enough events into the stat to get a level 3 entry. Check that
// the count and the mean of the level 3 stat match our expectations.
fn long_test() {
let auto_next = 2;
let level_0_period = 4;
let mut hier_integer = make_hier(level_0_period, auto_next);
let mut events = 0;
// Record data until there's a level 3 sum statistic.
while hier_integer.stats[3].all_len() == 0 {
events += 1;
hier_integer.record_i64(events);
check_sizes(&hier_integer, events, false);
}
// Now see that all the sizes, etc, match what we
// expect.
let dimensions = &hier_integer.dimensions;
let mut events_per_level_3 = auto_next;
for i in 0..dimensions.len() - 1 {
events_per_level_3 *= dimensions[i].period;
}
{
let stat_rc = hier_integer.stats[3].newest().unwrap();
let stat_borrow = stat_rc.borrow();
let stat = stat_borrow.to_rustics();
let events_in_stat = (events - 1) as f64;
let sum = (events_in_stat * (events_in_stat + 1.0)) / 2.0;
let mean = sum / events_in_stat;
println!("long_test: stats.mean() {}, expected {}", stat.mean(), mean);
assert!(stat.count() as i64 == events - 1 );
assert!(stat.count() as i64 == events_per_level_3 as i64);
assert!(stat.mean() == mean );
hier_integer.print_all(None, None);
}
// Do a quick test of the traverser. It should see each
// statistic in the matrix.
let mut traverser = TestTraverser::new();
let mut predicted = 0;
hier_integer.traverse_live(&mut traverser);
for level in 0..hier_integer.dimensions.len() {
predicted += hier_integer.live_len(level) as i64;
}
println!("long_test: traversed {} stats structs, predicted {}",
traverser.count, predicted);
assert!(traverser.count == predicted);
}
fn sample_usage() {
// Make a descriptor of the first level. We have chosen to sum 1000
// level 0 RunningInteger structs into one level 1 RunningInteger
// struct. This level is large, so we will keep only 1000 level 0
// structs around.
let dimension_0 = HierDimension::new(1000, 1000);
// At level 1, we want to sum 100 level 1 statistics into one level 2
// statistics. This level is smaller, so let's retain 200
// RunningInteger structs here.
let dimension_1 = HierDimension::new(100, 200);
// Level two isn't summed, so the period isn't used. Tell it to
// sum one event to keep the contructor happy. Let's pretend this
// level isn't used much, so retain only 100 structs in it.
let dimension_2 = HierDimension::new(1, 100);
// Now create the Vec. Save the dimension structs for future use.
let dimensions =
vec![
dimension_0.clone(), dimension_1.clone(), dimension_2.clone()
];
// Now create the entire descriptor for the hier struct. Let's
// record 2000 events into each level 0 RunningInteger instance.
let auto_advance = Some(2000);
let descriptor = HierDescriptor::new(dimensions, auto_advance);
// Now create some items used by Hier to do printing.
let name = "test hierarchical integer".to_string();
let title = "test hierarchical integer".to_string();
let printer = stdout_printer();
// Finally, create the configuration description for the
// constructor.
let configuration =
IntegerHierConfig { descriptor, name, title, printer };
// Now make the Hier instance.
let mut integer_hier = IntegerHier::new_hier(configuration);
// Now record some events with boring data.
let mut events = 0;
let auto_advance = auto_advance.unwrap();
for i in 0..auto_advance {
events += 1;
integer_hier.record_i64(i + 10);
}
// We have just completed the first level 0 structure, but
// the implementation creates the next struct only when
// it has data to record, so there should be only one level
// zero struct, and nothing at level 1 or level 2.
assert!(integer_hier.event_count() == events);
assert!(integer_hier.count() == events as u64);
assert!(integer_hier.live_len(0) == 1 );
assert!(integer_hier.live_len(1) == 0 );
assert!(integer_hier.live_len(2) == 0 );
// Now record some data to force the creation of
// the second level 1 struct.
events += 1;
integer_hier.record_i64(10);
// The new level 0 struct should have only one event
// recorded. The Rustics implementatio for Hier returns
// the data in the current level 0 struct, so check it.
assert!(integer_hier.event_count() == events);
assert!(integer_hier.count() == 1 );
assert!(integer_hier.live_len(0) == 2 );
assert!(integer_hier.live_len(1) == 0 );
assert!(integer_hier.live_len(2) == 0 );
let events_per_level_1 =
auto_advance * dimension_0.period() as i64;
for i in events..events_per_level_1 {
integer_hier.record_i64(i);
events += 1;
}
// Check the state again. We need to record one more
// events to cause the summation at level 0 into level
// 1.
let expected_live = dimension_0.period();
let expected_count = auto_advance as u64;
assert!(integer_hier.event_count() == events );
assert!(integer_hier.count() == expected_count);
assert!(integer_hier.live_len(0) == expected_live );
assert!(integer_hier.live_len(1) == 0 );
assert!(integer_hier.live_len(2) == 0 );
integer_hier.record_i64(42);
events += 1;
assert!(integer_hier.live_len(1) == 1 );
assert!(integer_hier.event_count() == events);
}
#[test]
fn run_tests() {
println!("Running the hierarchical stats tests.");
simple_hier_test();
sample_usage();
long_test();
}
}