1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
use num_complex::Complex;
use num_traits::Zero;

use common::{FFTnum, verify_length, verify_length_divisible};

use ::{Length, IsInverse, FFT};
use twiddles;

/// Naive O(n^2 ) Discrete Fourier Transform implementation
///
/// This implementation is primarily used to test other FFT algorithms. In a few rare cases, such as small
/// [Cunningham Chain](https://en.wikipedia.org/wiki/Cunningham_chain) primes, this can be faster than the O(nlogn)
/// algorithms
///
/// ~~~
/// // Computes a naive DFT of size 1234
/// use rustfft::algorithm::DFT;
/// use rustfft::FFT;
/// use rustfft::num_complex::Complex;
/// use rustfft::num_traits::Zero;
///
/// let mut input:  Vec<Complex<f32>> = vec![Zero::zero(); 1234];
/// let mut output: Vec<Complex<f32>> = vec![Zero::zero(); 1234];
///
/// let dft = DFT::new(1234, false);
/// dft.process(&mut input, &mut output);
/// ~~~
pub struct DFT<T> {
    twiddles: Vec<Complex<T>>,
    inverse: bool,
}

impl<T: FFTnum> DFT<T> {
    /// Preallocates necessary arrays and precomputes necessary data to efficiently compute DFT
    pub fn new(len: usize, inverse: bool) -> Self {
        DFT {
            twiddles: twiddles::generate_twiddle_factors(len, inverse),
            inverse: inverse
        }
    }

    #[inline(always)]
    fn perform_fft(&self, signal: &[Complex<T>], spectrum: &mut [Complex<T>]) {
        for k in 0..spectrum.len() {
            let output_cell = spectrum.get_mut(k).unwrap();

            *output_cell = Zero::zero();
            let mut twiddle_index = 0;

            for input_cell in signal {
                let twiddle = self.twiddles[twiddle_index];
                *output_cell = *output_cell + twiddle * input_cell;

                twiddle_index += k;
                if twiddle_index >= self.twiddles.len() {
                    twiddle_index -= self.twiddles.len();
                }
            }
        }
    }
}

impl<T: FFTnum> FFT<T> for DFT<T> {
    fn process(&self, input: &mut [Complex<T>], output: &mut [Complex<T>]) {
        verify_length(input, output, self.len());

        self.perform_fft(input, output);
    }
    fn process_multi(&self, input: &mut [Complex<T>], output: &mut [Complex<T>]) {
        verify_length_divisible(input, output, self.len());

        for (in_chunk, out_chunk) in input.chunks_mut(self.len()).zip(output.chunks_mut(self.len())) {
            self.perform_fft(in_chunk, out_chunk);
        }
    }
}
impl<T> Length for DFT<T> {
    #[inline(always)]
    fn len(&self) -> usize {
        self.twiddles.len()
    }
}
impl<T> IsInverse for DFT<T> {
    #[inline(always)]
    fn is_inverse(&self) -> bool {
        self.inverse
    }
}

#[cfg(test)]
mod unit_tests {
    use super::*;
    use std::f32;
    use test_utils::{random_signal, compare_vectors};
    use num_complex::Complex;
    use num_traits::Zero;

    fn dft(signal: &[Complex<f32>], spectrum: &mut [Complex<f32>]) {
        for (k, spec_bin) in spectrum.iter_mut().enumerate() {
            let mut sum = Zero::zero();
            for (i, &x) in signal.iter().enumerate() {
                let angle = -1f32 * (i * k) as f32 * 2f32 * f32::consts::PI / signal.len() as f32;
                let twiddle = Complex::from_polar(&1f32, &angle);

                sum = sum + twiddle * x;
            }
            *spec_bin = sum;
        }
    }

    #[test]
    fn test_matches_dft() {
        let n = 4;

        for len in 1..20 {
            let dft_instance = DFT::new(len, false);
            assert_eq!(dft_instance.len(), len, "DFT instance reported incorrect length");

            let mut expected_input = random_signal(len * n);
            let mut actual_input = expected_input.clone();
            let mut multi_input = expected_input.clone();

            let mut expected_output = vec![Zero::zero(); len * n];
            let mut actual_output = expected_output.clone();
            let mut multi_output = expected_output.clone();

            // perform the test
            dft_instance.process_multi(&mut multi_input, &mut multi_output);

            for (input_chunk, output_chunk) in actual_input.chunks_mut(len).zip(actual_output.chunks_mut(len)) {
                dft_instance.process(input_chunk, output_chunk);
            }

            for (input_chunk, output_chunk) in expected_input.chunks_mut(len).zip(expected_output.chunks_mut(len)) {
                dft(input_chunk, output_chunk);
            }

            assert!(compare_vectors(&expected_output, &actual_output), "process() failed, length = {}", len);
            assert!(compare_vectors(&expected_output, &multi_output), "process_multi() failed, length = {}", len);
        }

        //verify that it doesn't crash if we have a length of 0
        let zero_dft = DFT::new(0, false);
        let mut zero_input: Vec<Complex<f32>> = Vec::new();
        let mut zero_output: Vec<Complex<f32>> = Vec::new();

        zero_dft.process(&mut zero_input, &mut zero_output);
    }

    /// Returns true if our `dft` function calculates the given spectrum from the
    /// given signal, and if rustfft's DFT struct does the same
    fn test_dft_correct(signal: &[Complex<f32>], spectrum: &[Complex<f32>]) -> bool {
        assert_eq!(signal.len(), spectrum.len());

        let expected_signal = signal.to_vec();
        let mut expected_spectrum = vec![Zero::zero(); spectrum.len()];

        let mut actual_signal = signal.to_vec();
        let mut actual_spectrum = vec![Zero::zero(); spectrum.len()];

        dft(&expected_signal, &mut expected_spectrum);

        let dft_instance = DFT::new(signal.len(), false);
        dft_instance.process(&mut actual_signal, &mut actual_spectrum);

        return compare_vectors(spectrum, &expected_spectrum) && compare_vectors(spectrum, &actual_spectrum);
    }

    #[test]
    fn test_dft_known_len_2() {
        let signal = [Complex{re: 1f32, im: 0f32},
                      Complex{re:-1f32, im: 0f32}];
        let spectrum = [Complex{re: 0f32, im: 0f32},
                        Complex{re: 2f32, im: 0f32}];
        assert!(test_dft_correct(&signal[..], &spectrum[..]));
    }

    #[test]
    fn test_dft_known_len_3() {
        let signal = [Complex{re: 1f32, im: 1f32},
                      Complex{re: 2f32, im:-3f32},
                          Complex{re:-1f32, im: 4f32}];
        let spectrum = [Complex{re: 2f32, im: 2f32},
                        Complex{re: -5.562177f32, im: -2.098076f32},
                        Complex{re: 6.562178f32, im: 3.09807f32}];
        assert!(test_dft_correct(&signal[..], &spectrum[..]));
    }

    #[test]
    fn test_dft_known_len_4() {
        let signal = [Complex{re: 0f32, im: 1f32},
                      Complex{re: 2.5f32, im:-3f32},
                      Complex{re:-1f32, im: -1f32},
                      Complex{re: 4f32, im: 0f32}];
        let spectrum = [Complex{re: 5.5f32, im: -3f32},
                        Complex{re: -2f32, im: 3.5f32},
                        Complex{re: -7.5f32, im: 3f32},
                        Complex{re: 4f32, im: 0.5f32}];
        assert!(test_dft_correct(&signal[..], &spectrum[..]));
    }

    #[test]
    fn test_dft_known_len_6() {
        let signal = [Complex{re: 1f32, im: 1f32},
                      Complex{re: 2f32, im: 2f32},
                      Complex{re: 3f32, im: 3f32},
                      Complex{re: 4f32, im: 4f32},
                      Complex{re: 5f32, im: 5f32},
                      Complex{re: 6f32, im: 6f32}];
        let spectrum = [Complex{re: 21f32, im: 21f32},
                        Complex{re: -8.16f32, im: 2.16f32},
                        Complex{re: -4.76f32, im: -1.24f32},
                        Complex{re: -3f32, im: -3f32},
                        Complex{re: -1.24f32, im: -4.76f32},
                        Complex{re: 2.16f32, im: -8.16f32}];
        assert!(test_dft_correct(&signal[..], &spectrum[..]));
    }
}