1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
//! Calculating LR tables
use std::{
cell::RefCell,
cmp::{self, Ordering},
collections::{BTreeMap, BTreeSet, VecDeque},
fmt::{self, Display},
iter::{self, repeat},
ops::{Index, IndexMut},
slice::{Iter, IterMut},
};
use clap::ValueEnum;
use colored::Colorize;
use itertools::Itertools;
use rustemo::log;
use crate::{
create_index,
error::{Error, Result},
grammar::{Associativity, Priority, Terminal, DEFAULT_PRIORITY},
index::{
NonTermIndex, NonTermVec, ProdIndex, ProdVec, StateIndex, StateVec,
SymbolIndex, SymbolVec, TermIndex, TermVec,
},
lang::rustemo_actions::Recognizer,
settings::{ParserAlgo, Settings},
};
use super::grammar::{res_symbol, Grammar};
#[derive(Debug, Clone)]
pub enum Action {
Shift(StateIndex),
Reduce(ProdIndex, usize),
Accept,
}
/// Specifies the type of the parsing table used during parsing to decide about
/// shift/reduce/goto operations.
#[allow(non_camel_case_types)]
#[derive(Debug, Default, Clone, PartialEq, Eq, ValueEnum)]
pub enum TableType {
/// Lookahead LR tables. See
/// <http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-065.pdf>
LALR,
/// A slight modification of LALR tables to prevent some reduce/reduce
/// conflicts. Inspired by <https://doi.org/10.1007/BF00290336>
#[default]
LALR_PAGERW,
/// LALR tables extended with right-nulled entries. Used for GLR parsing
/// (RNGLR). See <https://doi.org/10.1145/1146809.1146810>
LALR_RN,
}
type Firsts = BTreeSet<SymbolIndex>;
type FirstSets = SymbolVec<Firsts>;
create_index!(ItemIndex, ItemVec);
/// LR State is a set of LR items and a dict of LR automata actions and gotos.
#[derive(Clone)]
pub struct LRState<'g> {
grammar: &'g Grammar,
/// The index of this state.
pub idx: StateIndex,
/// The grammar symbol related to this state. Intuitively, the grammar
/// symbol seen on a transition to this state. E.g. if the symbol is
/// terminal the parser did a Shift operation to enter this state, otherwise
/// it did reduce.
pub symbol: SymbolIndex,
/// LR(1) items used to construct this state.
items: ItemVec<LRItem>,
/// A terminal indexed vector of LR actions. Actions instruct LR parser to
/// Shift from the input, Reduce the top of the LR stack or accept the
/// input. For the deterministic parsing the internal vector of actions can
/// contain only one action.
pub actions: TermVec<Vec<Action>>,
/// A non-terminal indexed vector of LR GOTOs. GOTOs represent transitions
/// to another state after successful reduction of a non-terminal.
pub gotos: NonTermVec<Option<StateIndex>>,
/// Terminals sorted by the priority for lexical disambiguation.
pub sorted_terminals: Vec<TermIndex>,
// Each production has a priority. We use this priority to resolve S/R and
// R/R conflicts. Since the Shift operation is executed over terminal symbol
// to resolve S/R we need terminal priority. But, the priority given for a
// terminal directly is used in lexical disambiguation. Instead, we need
// terminal priority inherited from productions. We, say that the priority
// of terminals in S/R resolution will be the priority of the production
// terminal is used in. But, since the same terminal can be used in many
// production we will take the maximum for S/R resolution.
max_prior_for_term: BTreeMap<TermIndex, Priority>,
}
/// Two LR states are equal if they contain the same kernel items.
impl<'g> PartialEq for LRState<'g> {
fn eq(&self, other: &Self) -> bool {
let self_ki = self.kernel_items();
let other_ki = other.kernel_items();
self_ki.len() == other_ki.len()
&& self_ki.iter().zip(other_ki.iter()).all(|(x, y)| x == y)
}
}
impl<'g> Eq for LRState<'g> {}
impl<'g> Display for LRState<'g> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"{}\n\t{}",
format!(
"State {}:{}",
self.idx,
self.grammar.symbol_name(self.symbol)
)
.green()
.bold(),
self.items
.iter()
.map(|i| i.to_string(self.grammar))
.collect::<Vec<_>>()
.join("\n\t")
)
}
}
impl<'g> std::fmt::Debug for LRState<'g> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("LRState")
.field("idx", &self.idx)
.field("symbol", &self.symbol)
.field("items", &self.items)
.field("actions", &self.actions)
.field("gotos", &self.gotos)
.field("sorted_terminals", &self.sorted_terminals)
.field("max_prior_for_term", &self.max_prior_for_term)
.finish()
}
}
impl<'g> LRState<'g> {
fn new(
grammar: &'g Grammar,
index: StateIndex,
symbol: SymbolIndex,
) -> Self {
Self {
grammar,
idx: index,
symbol,
items: ItemVec::new(),
actions: grammar.new_termvec(vec![]),
gotos: grammar.new_nontermvec(None),
max_prior_for_term: BTreeMap::new(),
sorted_terminals: Vec::new(),
}
}
fn new_with_items(
grammar: &'g Grammar,
index: StateIndex,
symbol: SymbolIndex,
items: ItemVec<LRItem>,
) -> Self {
Self {
grammar,
idx: index,
symbol,
items,
actions: grammar.new_termvec(vec![]),
gotos: grammar.new_nontermvec(None),
max_prior_for_term: BTreeMap::new(),
sorted_terminals: Vec::new(),
}
}
fn add_item(mut self, item: LRItem) -> Self {
self.items.push(item);
self
}
fn kernel_items(&self) -> Vec<&LRItem> {
self.items.iter().filter(|i| i.is_kernel()).collect()
}
fn nonkernel_items(&self) -> Vec<&LRItem> {
self.items.iter().filter(|i| !i.is_kernel()).collect()
}
/// Closes over LR items of the LRState.
///
/// Starting from the given items (usually just kernel items), for each
/// item, if right of the dot is a non-terminal, adds all items where LHS is
/// a given non-terminal and the dot is at the beginning. In other words,
/// adds all missing non-kernel items.
fn closure(
&mut self,
first_sets: &FirstSets,
prod_rn_lengths: &Option<ProdVec<usize>>,
) {
loop {
// This is OK as Hash uses only non-interior-mutable part of the
// LRItem type.
#[allow(clippy::mutable_key_type)]
let mut new_items: BTreeSet<LRItem> = BTreeSet::new();
for item in &self.items {
if let Some(symbol) = item.symbol_at_position(self.grammar) {
if self.grammar.is_nonterm(symbol) {
let mut new_follow;
// Find first set of substring that follow symbol at
// position
if item.position + 1
< self.grammar.productions[item.prod].rhs.len()
{
new_follow = firsts(
self.grammar,
first_sets,
&self.grammar.production_rhs_symbols(item.prod)
[item.position + 1..],
);
// If symbols that follows the current nonterminal
// can derive EMPTY add follows of current item.
if new_follow.contains(&self.grammar.empty_index) {
new_follow.remove(&self.grammar.empty_index);
new_follow.extend(item.follow.borrow().iter());
}
} else {
// If current item position is at the end add all of
// its follow to the next item.
new_follow = Follow::new();
new_follow.extend(item.follow.borrow().iter());
}
// Get all productions of the current non-terminal and
// create LR items with the calculated follow.
let nonterm =
self.grammar.symbol_to_nonterm_index(symbol);
for prod in
&self.grammar.nonterminals[nonterm].productions
{
new_items.insert(LRItem::with_follow(
self.grammar,
*prod,
prod_rn_lengths.as_ref().map(|p| p[*prod]),
new_follow.clone(),
));
}
}
}
}
// Add all new items to state.items. If item is already there update
// follow. If there is no change break from the loop.
let mut change = false;
for new_item in new_items {
match self.items.iter_mut().find(|x| *x == &new_item) {
Some(item) => {
// Item already exists, update follows
let l = item.follow.borrow().len();
item.follow
.borrow_mut()
.extend(new_item.follow.borrow().iter());
if item.follow.borrow().len() > l {
change = true;
}
}
None => {
self.items.push(new_item);
change = true;
}
}
}
if !change {
break;
}
}
}
/// Group LR items per grammar symbol right of the dot, and calculate
/// terminal max priorities.
fn group_per_next_symbol(
&mut self,
) -> BTreeMap<SymbolIndex, Vec<ItemIndex>> {
let mut per_next_symbol: BTreeMap<SymbolIndex, Vec<ItemIndex>> =
BTreeMap::new();
for (idx, item) in self.items.iter().enumerate() {
let symbol = item.symbol_at_position(self.grammar);
if let Some(symbol) = symbol {
per_next_symbol.entry(symbol).or_default().push(idx.into());
if self.grammar.is_term(symbol) {
let symbol = self.grammar.symbol_to_term_index(symbol);
let prod_prio = self.grammar.productions[item.prod].prio;
self.max_prior_for_term
.entry(symbol)
.and_modify(|v| *v = cmp::max(*v, prod_prio))
.or_insert(prod_prio);
}
}
}
per_next_symbol
}
}
/// Represents an item in the items set. Item is defined by a production and a
/// position inside production (the dot). If the item is of LR_1 type follow set
/// is also defined. Follow set is a set of terminals that can follow symbol at
/// the given position in the given production.
#[derive(Debug, Eq, Clone, PartialOrd, Ord)]
struct LRItem {
prod: ProdIndex,
/// The length of the production
prod_len: usize,
/// Right-null production length - the last symbol in the production where
/// all the following symbols can reduce EMPTY.
/// Used in RN-GLR to decide when the item can reduce. `None` for LR.
rn_len: Option<usize>,
/// The position of "the dot" in the RHS of the production
position: usize,
follow: RefCell<Follow>,
}
impl std::hash::Hash for LRItem {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.prod.hash(state);
self.position.hash(state);
}
}
impl PartialEq for LRItem {
fn eq(&self, other: &Self) -> bool {
self.prod == other.prod && self.position == other.position
}
}
/// LRItem is a production with a dot in the RHS.
///
/// Intuitively, the dot signifies the position where the parsing process is in
/// a given state. The beginning position is 0, before the first symbol in a
/// production RHS. The end position is len(RHS), after the last symbol in a
/// RHS.
///
/// LRItem also keeps a set of follow terminals. The item is valid only if the
/// production is followed by a terminal from the given follow set.
///
/// # Example
///
/// ```rust
/// // If prod with index 5 is A: B a C;
/// let item = LRItem::new(5)
/// .next_item().unwrap()
/// .next_item().unwrap();
/// assert_eq(&item.position, 2)
/// ```
///
/// ```text
/// A: B a . C;
/// ^
/// |------ position is 2
/// ```
impl LRItem {
#[cfg(test)]
fn new(grammar: &Grammar, prod: ProdIndex, rn_len: Option<usize>) -> Self {
LRItem {
prod,
prod_len: grammar.production_len(prod),
rn_len,
position: 0,
follow: RefCell::new(Follow::new()),
}
}
fn with_follow(
grammar: &Grammar,
prod: ProdIndex,
rn_len: Option<usize>,
follow: Follow,
) -> Self {
LRItem {
prod,
prod_len: grammar.production_len(prod),
rn_len,
position: 0,
follow: RefCell::new(follow),
}
}
fn symbol_at_position(&self, grammar: &Grammar) -> Option<SymbolIndex> {
Some(res_symbol(
grammar.productions.get(self.prod)?.rhs.get(self.position)?,
))
}
/// Moves position to the right.
#[inline]
fn inc_position(mut self) -> Self {
assert!(self.position < self.prod_len);
self.position += 1;
self
}
/// True if this item belongs to the kernel core.
///
/// Kernel core items are those where position is not 0 except the augmented
/// production which by definition belongs to the core.
#[inline]
fn is_kernel(&self) -> bool {
self.position > 0 || self.prod == ProdIndex(0)
}
#[inline]
fn is_reducing(&self) -> bool {
self.position == self.prod_len
|| match self.rn_len {
Some(rn_len) => self.position >= rn_len,
None => false,
}
}
fn to_string(&self, grammar: &Grammar) -> String {
let prod = &grammar.productions[self.prod];
let mut rhs = prod
.rhs_symbols()
.iter()
.map(|s| grammar.symbol_name(*s))
.collect::<Vec<_>>();
rhs.insert(self.position, ".".into());
format!(
"{}: {} = {} {{{}}}",
prod.idx,
grammar
.symbol_name(grammar.nonterm_to_symbol_index(prod.nonterminal)),
rhs.join(" "),
self.follow
.borrow()
.iter()
.map(|f| grammar.symbol_name(*f))
.collect::<Vec<_>>()
.join(", ")
)
}
}
pub enum ConflictKind {
ShiftReduce(ProdIndex),
ReduceReduce(ProdIndex, ProdIndex),
}
pub struct Conflict<'g, 's> {
state: &'s LRState<'g>,
follow: TermIndex,
kind: ConflictKind,
}
impl<'g, 's> Display for Conflict<'g, 's> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "")?;
Ok(())
}
}
pub struct LRTable<'g, 's> {
pub states: StateVec<LRState<'g>>,
pub layout_state: Option<StateIndex>,
grammar: &'g Grammar,
settings: &'s Settings,
first_sets: FirstSets,
/// Right-nulled length of productions. Used in RNGLR. RN length is a
/// position in a production after which all the remaining symbols can
/// derive EMPTY.
pub production_rn_lengths: Option<ProdVec<usize>>,
}
impl<'g, 's> LRTable<'g, 's> {
pub fn new(grammar: &'g Grammar, settings: &'s Settings) -> Result<Self> {
let first_sets = first_sets(grammar);
let production_rn_lengths = if settings.table_type == TableType::LALR_RN
{
Some(production_rn_lengths(&first_sets, grammar))
} else {
None
};
let mut table = Self {
grammar,
settings,
states: StateVec::new(),
layout_state: None,
first_sets,
production_rn_lengths,
};
table.check_empty_sets()?;
table.calc_states(grammar.augmented_index);
if let Some(augmented_layout_index) = grammar.augmented_layout_index {
table.layout_state = Some(StateIndex(table.states.len()));
table.calc_states(augmented_layout_index)
}
log!("LR states constructed. Updating follows.");
table.propagate_follows();
log!(
"Calculate REDUCTION entries in ACTION tables and resolve \
possible conflicts."
);
table.calculate_reductions();
log!("Sort terminals for lexical disambiguation");
table.sort_terminals();
if settings.print_table {
println!("LR TABLE:");
println!("{}", table);
}
Ok(table)
}
/// Calculate LR states with GOTOs and ACTIONs for the given Grammar.
///
/// This collection of states is used to generate LR/GLR parser tables.
fn calc_states(&mut self, start_symbol: SymbolIndex) {
let mut current_state_idx = self.states.len();
let prods = &self.grammar.symbol_to_nonterm(start_symbol).productions;
assert_eq!(prods.len(), 1);
// Create a state for the first production (augmented)
let state = LRState::new(
self.grammar,
StateIndex(current_state_idx),
start_symbol,
)
.add_item(LRItem::with_follow(
self.grammar,
prods[0],
self.production_rn_lengths.as_ref().map(|p| p[prods[0]]),
Follow::from([self.grammar.stop_index]),
));
current_state_idx += 1;
// States to be processed.
let mut state_queue = VecDeque::from([state]);
log!("Calculating LR automaton states.");
while let Some(mut state) = state_queue.pop_front() {
// For each state calculate its closure first, i.e. starting from a so
// called "kernel items" expand collection with non-kernel items. We
// will also calculate GOTO and ACTIONS dicts for each state. These
// dicts will be keyed by a grammar symbol.
state.closure(&self.first_sets, &self.production_rn_lengths);
// To find out other states we examine following grammar symbols in the
// current state (symbols following current position/"dot") and group
// all items by a grammar symbol.
let per_next_symbol = state.group_per_next_symbol();
// Create accept action if possible.
for &symbol in per_next_symbol.keys() {
if symbol == self.grammar.stop_index {
state.actions[self.grammar.symbol_to_term_index(symbol)] =
vec![Action::Accept];
break;
}
}
// Create new states reachable from the current state.
let new_states =
Self::create_new_states(self.grammar, &state, per_next_symbol);
// Find states that already exists and try to merge. If not possible to
// merge or not found push state to state queue.
for mut new_state in new_states {
let mut new_state_found = true;
let mut target_state_symbol = new_state.symbol;
let mut target_state_idx = StateIndex(current_state_idx);
if let Some(old_state) = self
.states
.iter_mut()
.chain(state_queue.iter_mut())
.chain(iter::once(&mut state))
.find(|x| **x == new_state)
{
// If the same state already exists try to merge.
if Self::merge_state(self.settings, old_state, &new_state) {
new_state_found = false;
target_state_symbol = old_state.symbol;
target_state_idx = old_state.idx;
}
}
// Create GOTO for non-terminal or Shift Action for terminal.
if self.grammar.is_nonterm(target_state_symbol) {
state.gotos[self
.grammar
.symbol_to_nonterm_index(target_state_symbol)] =
Some(target_state_idx);
} else {
let term =
self.grammar.symbol_to_term_index(new_state.symbol);
state.actions[term].push(Action::Shift(target_state_idx));
}
if new_state_found {
// Merge is not possible. Create new state.
new_state.idx = StateIndex(current_state_idx);
state_queue.push_back(new_state);
current_state_idx += 1;
}
}
self.states.push(state);
}
}
/// Try to merge new_state to old_state if possible. If not possible return
/// false.
///
/// If old state has no R/R conflicts additional check is made and merging is
/// not done if it would add R/R conflict.
fn merge_state(
settings: &Settings,
old_state: &mut LRState<'g>,
new_state: &LRState<'g>,
) -> bool {
// States with different kernel sets cannot be merged.
if old_state != new_state {
return false;
}
let old_state_items = old_state
.items
.clone()
.into_iter()
.filter(|item| item.is_kernel());
// Item pairs of item from an old state and corresponding item from the new state.
let item_pairs: Vec<(&mut LRItem, &LRItem)> = iter::zip(
old_state.items.iter_mut().filter(|item| item.is_kernel()),
old_state_items
.map(|x| new_state.items.iter().find(|&i| *i == x).unwrap()),
)
.collect();
if settings.table_type != TableType::LALR {
// If this is not pure LALR check to see if merging would introduce R/R.
// In case it would, do not merge but keep these states split.
for (old, new) in &item_pairs {
if !old.is_reducing() {
continue;
}
for (old_in, new_in) in &item_pairs {
if old == old_in {
continue;
}
// Check if any of the current follow terminals exists in any other
// new follow but not in the same item old follow.
if old.follow.borrow().iter().any(|x| {
new_in.follow.borrow().contains(x)
&& !old_in.follow.borrow().contains(x)
&& !new.follow.borrow().contains(x) // If conflict exist in new, merge anyway
}) {
return false;
}
}
}
}
// Do the merge by updating old items follow sets.
for (old, new) in item_pairs {
old.follow.borrow_mut().extend(new.follow.borrow().iter())
}
true
}
/// Propagate LR items follows.
///
/// This is needed due to state merging. Whenever merge occurs, target state
/// follows might get updated so we have to propagate those changes to other
/// states.
fn propagate_follows(&mut self) {
let mut changed = true;
while changed {
changed = false;
for state in self.states.iter_mut() {
// Refresh closure to propagate follows from kernel items to
// non-kernel of the same state as the merge is done only for kernel
// items.
state.closure(&self.first_sets, &self.production_rn_lengths);
}
for state in self.states.iter() {
// Use GOTOs and ACTIONS to propagate follows between states.
state
.gotos
.iter()
.filter_map(|x| x.as_ref())
.chain(state.actions.iter().flat_map(|x| {
x.iter().filter_map(|a| match a {
Action::Shift(state) => Some(state),
_ => None,
})
}))
.for_each(|&target_state| {
for target_item in &mut self.states[target_state]
.items
.iter()
.filter(|x| x.is_kernel())
{
// Find corresponding item in state
if let Some(source_item) =
state.items.iter().find(|&x| {
x.prod == target_item.prod
&& x.position
== target_item.position - 1
})
{
// Update follow of target item with item from state
let follow_len =
target_item.follow.borrow().len();
target_item
.follow
.borrow_mut()
.extend(source_item.follow.borrow().iter());
// if target item follow was changed set changed to true
if target_item.follow.borrow().len()
> follow_len
{
changed = true
}
}
}
})
}
}
}
/// Calculate reductions entries in action tables and resolve possible
/// conflicts.
fn calculate_reductions(&mut self) {
let mut aug_symbols = vec![self.grammar.augmented_index];
if let Some(layout_index) = self.grammar.augmented_layout_index {
aug_symbols.push(layout_index);
}
for state in &mut self.states {
for item in state.items.iter().filter(|x| x.is_reducing()) {
let prod = &self.grammar.productions[item.prod];
// Accept if reducing by augmented productions for STOP lookahead
if aug_symbols.contains(
&self.grammar.nonterm_to_symbol_index(prod.nonterminal),
) {
let actions = &mut state.actions[TermIndex(0)];
actions.push(Action::Accept);
continue;
}
let new_reduce = Action::Reduce(item.prod, item.position);
for follow_symbol in item.follow.borrow().iter() {
let follow_term =
self.grammar.symbol_to_term(*follow_symbol);
let actions = &mut state.actions[follow_term.idx];
if actions.is_empty() {
// No other action are possible for this follow terminal.
// Just register this reduction.
actions.push(new_reduce.clone());
} else {
// Conflict. Try to resolve.
let (shifts, reduces): (Vec<_>, Vec<_>) =
actions.clone().into_iter().partition(|x| {
matches!(x, Action::Shift(_) | Action::Accept)
});
// Only one SHIFT or ACCEPT might exists for a single
// terminal but many REDUCEs might exist.
assert!(shifts.len() <= 1);
let mut should_reduce = true;
if let Some(shift) = shifts.get(0) {
// Shift/Reduce conflict. Use assoc and priority to
// resolve. For disambiguation treat ACCEPT action the
// same as SHIFT.
let shift_prio = match shift {
Action::Accept => DEFAULT_PRIORITY,
_ => state.max_prior_for_term[&follow_term.idx],
};
match prod.prio.cmp(&shift_prio) {
Ordering::Less => {
// If priority of existing SHIFT action is
// higher then leave it instead
should_reduce = false
}
Ordering::Equal => {
// If priorities are the same use associativity
// Terminals associativity has priority over
// production associativity
match (&prod.assoc, &follow_term.assoc) {
(
Associativity::Left,
Associativity::None,
)
| (_, Associativity::Right) => {
// Override SHIFT with this REDUCE
assert!(actions.len() == 1);
actions.pop();
}
(
Associativity::Right,
Associativity::None,
)
| (_, Associativity::Left) => {
// If associativity is right leave SHIFT
// action as "stronger" and don't consider
// this reduction any more. Right
// associative reductions can't be in the
// same set of actions together with SHIFTs.
should_reduce = false;
}
(
Associativity::None,
Associativity::None,
) => {
// If priorities are the same and no
// associativity defined use preferred
// strategy.
let empty = prod.rhs.is_empty();
let prod_pse = empty
&& self
.settings
.prefer_shifts_over_empty
&& !prod.nopse;
let prod_ps = !empty
&& self.settings.prefer_shifts
&& !prod.nops;
should_reduce =
!(prod_pse || prod_ps);
}
}
}
Ordering::Greater => {
// This item operation priority is higher =>
// override with reduce
assert!(actions.len() == 1);
actions.pop();
}
}
}
if should_reduce {
if reduces.is_empty() {
actions.push(new_reduce.clone())
} else {
// REDUCE/REDUCE conflicts.
// Try to resolve using priorities.
let reduces_prio = reduces
.iter()
.map(|x| match x {
Action::Reduce(prod, ..) => {
self.grammar.productions[*prod].prio
}
other => panic!(
"This should not happen. Got {:?}",
other
),
})
.collect::<Vec<_>>();
if reduces_prio.iter().all(|x| prod.prio < *x) {
// Current product priority is less than all
// other reductions. Do not add this reduction.
} else if reduces_prio
.iter()
.all(|x| prod.prio > *x)
{
// Current product priority is greater than all
// other reductions. This reduction should
// replace all others.
actions.retain(|x| {
!matches!(x, Action::Reduce(..))
});
actions.push(new_reduce.clone())
} else {
// For LR parsing non-empty reductions are
// preferred over empty...
if let ParserAlgo::LR =
self.settings.parser_algo
{
// ... so remove all empty reductions.
actions.retain(|x| !matches!(x, Action::Reduce(_, len) if *len == 0));
if item.prod_len > 0
|| actions.is_empty()
{
// If current reduction is non-empty add it.
actions.push(new_reduce.clone())
}
} else {
// This R/R conflict can't be resolved.
// Just add the new reduction and GLR
// will handle it by investigating all
// possibilities.
actions.push(new_reduce.clone())
}
}
}
}
}
}
}
}
}
/// Sort terminals for each state according to explicit priority and terminal
/// recognizer type. String recognizers have precedence over regex recognizers.
/// Longer string recognizers have precedence over shorter.
fn sort_terminals(&mut self) {
for state in &mut self.states {
let mut terminals = state
.actions
.iter()
.enumerate()
.filter(|(_, actions)| !actions.is_empty())
.map(|(idx, _)| TermIndex(idx))
.collect::<Vec<_>>();
let term_prio = |term: &Terminal| -> u32 {
// Make STOP the first to try
if self.grammar.term_to_symbol_index(term.idx)
== self.grammar.stop_index
{
1e6 as u32
} else {
term.prio * 1000
+ match &term.recognizer {
Some(recognizer) => {
(match recognizer {
Recognizer::StrConst(str_rec) => {
str_rec.as_ref().len()
}
Recognizer::RegexTerm(_) => 0,
}) as u32
}
None => 0,
}
}
};
terminals.sort_by(|&l, &r| {
let l_term_prio = term_prio(&self.grammar.terminals[l]);
let r_term_prio = term_prio(&self.grammar.terminals[r]);
r_term_prio.cmp(&l_term_prio)
});
log!(
"SORTED: {:?}",
&self.grammar.symbol_names(
terminals
.iter()
.map(|i| self.grammar.term_to_symbol_index(*i))
.collect::<Vec<_>>()
)
);
state.sorted_terminals = terminals;
}
}
/// Create new states that can be reached from the given state.
fn create_new_states(
grammar: &'g Grammar,
state: &LRState,
per_next_symbol: BTreeMap<SymbolIndex, Vec<ItemIndex>>,
) -> Vec<LRState<'g>> {
let mut states = Vec::new();
for (symbol, items) in per_next_symbol {
let next_state_items = items
.into_iter()
.map(|i| state.items[i].clone().inc_position())
.collect();
states.push(LRState::new_with_items(
grammar,
StateIndex(0), // Temporary value. The caller will set the real index.
symbol,
next_state_items,
));
}
states
}
/// Check for states with GOTO links but without SHIFT links.
///
/// This is invalid as GOTO links will never be traversed.
fn check_empty_sets(&self) -> Result<()> {
if let Some((idx, _)) = self
.first_sets
.iter()
.enumerate()
.find(|(_, s)| s.is_empty())
{
return Err(Error::Error(format!(
"First set empty for grammar symbol {:?}.\n\
An infinite recursion on the grammar symbol.",
&self.grammar.symbol_name(SymbolIndex(idx))
)));
}
Ok(())
}
pub fn get_conflicts(&'s self) -> Vec<Conflict<'g, 's>> {
self.states.iter().flat_map(|state| {
state
.actions
.iter()
.enumerate()
.filter(|(_, actions)| actions.len() > 1)
.flat_map(|(idx, actions)| {
actions.iter().combinations(2).map(move |conflict| (idx, conflict))
})
.map(|(term_index, conflict)| {
let kind = match &conflict[..] {
[Action::Shift(_), Action::Reduce(prod, _)]
| [Action::Reduce(prod, _), Action::Shift(_)]=>
ConflictKind::ShiftReduce(*prod),
[Action::Reduce(prod1, _), Action::Reduce(prod2, _)] =>
ConflictKind::ReduceReduce(*prod1, *prod2),
e => {
// This cannot happen as we have combinations of size 2.
print!("{e:?}");
unreachable!()
}
};
Conflict {
state,
follow: TermIndex(term_index),
kind
}
})
}).collect()
}
pub fn print_conflicts_report(&self, conflicts: &Vec<Conflict<'g, 's>>) {
for conflict in conflicts {
println!("{} {}", "In".green().bold(), conflict.state);
print!(
"When I saw {} and see token {} ahead I can't decide",
self.grammar.symbol_name(conflict.state.symbol).green(),
self.grammar
.symbol_name(
self.grammar.term_to_symbol_index(conflict.follow)
)
.green()
);
match conflict.kind {
ConflictKind::ShiftReduce(prod) => {
println!(
" should I shift or reduce by production:\n{}\n",
self.grammar.productions[prod]
.to_string(self.grammar)
.green()
);
}
ConflictKind::ReduceReduce(prod1, prod2) => {
println!(
" should I reduce by production:\n{}\nor production:\n{}\n",
self.grammar.productions[prod1].to_string(self.grammar).green(),
self.grammar.productions[prod2].to_string(self.grammar).green()
);
}
}
}
let shift_reduce_len = conflicts
.iter()
.filter(|c| matches!(c.kind, ConflictKind::ShiftReduce(..)))
.count();
let reduce_reduce_len = conflicts
.iter()
.filter(|c| matches!(c.kind, ConflictKind::ReduceReduce(..)))
.count();
println!(
"{} conflict(s). {} Shift/Reduce and {} Reduce/Reduce.",
shift_reduce_len + reduce_reduce_len,
shift_reduce_len,
reduce_reduce_len
);
}
/// Maximal number of actions per state/token. For LR can't be >1.
#[inline]
pub fn max_actions(&self) -> usize {
self.states
.iter()
.map(|state| {
state.actions.iter().map(|a| a.len()).max().unwrap_or(0)
})
.max()
.unwrap()
}
#[inline]
pub fn max_recognizers(&self) -> usize {
self.states
.iter()
.map(|state| state.actions.iter().filter(|a| !a.is_empty()).count())
.max()
.unwrap()
}
pub fn to_dot(&self) -> String {
let mut dot = String::from(
r#"
digraph grammar {
rankdir=LR
fontname = "Bitstream Vera Sans"
fontsize = 8
node[
shape=record,
style=filled,
fillcolor=aliceblue
]
nodesep = 0.3
edge[dir=black,arrowtail=empty]
"#,
);
let dot_escape = |s: &String| {
s.replace('\n', r"\n")
.replace('\\', "\\\\")
.replace('"', r#"\""#)
.replace('|', r"\|")
.replace('{', r"\{")
.replace('}', r"\}")
.replace('>', r"\>")
.replace('<', r"\<")
.replace('?', r"\?")
};
for state in &self.states {
let mut kernel_items_str = String::new();
for item in state.kernel_items() {
kernel_items_str += &format!(
"{}\\l",
dot_escape(&item.to_string(self.grammar))
);
}
let nonkernel_items = state.nonkernel_items();
let mut nonkernel_items_str = if !nonkernel_items.is_empty() {
String::from("|")
} else {
String::new()
};
for item in nonkernel_items {
nonkernel_items_str += &format!(
"{}\\l",
dot_escape(&item.to_string(self.grammar))
);
}
let mut reductions: Vec<String> = vec![];
for term in &self.grammar.terminals {
let mut term_reduction_prods: Vec<String> = vec![];
for action in &state.actions[term.idx] {
match action {
Action::Shift(target_state_idx) => {
dot += &format!(
"{} -> {} [label=\"SHIFT:{}\"]\n",
state.idx, target_state_idx, term.name
)
}
Action::Reduce(prod_idx, len) => {
term_reduction_prods
.push(format!("({},{})", prod_idx, len));
}
Action::Accept => {
dot += &format!(
"{} -> ACCEPT [label=\"{}\"]\n",
state.idx, term.name
)
}
}
}
if !term_reduction_prods.is_empty() {
dbg!(&term_reduction_prods);
let r = term_reduction_prods.join(", ");
reductions.push(if term_reduction_prods.len() > 1 {
format!("{}:[{}]", dot_escape(&term.name), r)
} else {
format!("{}:{}", dot_escape(&term.name), r)
});
}
}
let reductions = if !reductions.is_empty() {
format!("|Reductions:\\l{}", reductions.join(", "))
} else {
String::new()
};
dot += &format!(
"{} [label=\"{}|{}{}{}\"]\n",
state.idx,
dot_escape(&format!(
"{}:{}",
state.idx,
self.grammar.symbol_name(state.symbol)
)),
kernel_items_str,
nonkernel_items_str,
reductions
);
// GOTOs
for nonterm in &self.grammar.nonterminals {
if let Some(target_state_idx) = state.gotos[nonterm.idx] {
dot += &format!(
"{} -> {} [label=\"GOTO:{}\"]\n",
state.idx, target_state_idx, nonterm.name
)
}
}
}
dot += "\n}\n";
dot
}
}
fn production_rn_lengths(
first_sets: &SymbolVec<BTreeSet<SymbolIndex>>,
grammar: &Grammar,
) -> ProdVec<usize> {
let mut prod_rn_lens = ProdVec::new();
for production in &grammar.productions {
let mut rn_len = production.rhs.len();
for symbol in production.rhs_symbols().iter().rev() {
if first_sets[*symbol].contains(&grammar.empty_index) {
rn_len -= 1;
} else {
break;
}
}
prod_rn_lens.push(rn_len)
}
prod_rn_lens
}
impl<'g, 's> Display for LRTable<'g, 's> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for state in &self.states {
writeln!(
f,
"\nState {}:{}",
state.idx,
self.grammar.symbol_name(state.symbol),
)?;
let actions = state
.actions
.iter()
.enumerate()
.filter(|(_, a)| !a.is_empty())
.flat_map(|(i, a)| repeat(i).zip(a.iter()))
.map(|(i, a)| {
(
self.grammar.terminals[TermIndex(i)].name.clone(),
match a {
Action::Shift(s) => format!("Shift to {s}"),
Action::Reduce(p, l) => {
format!(
"Reduce for len {l} by: {}",
self.grammar.productions[*p]
.to_string(self.grammar)
)
}
Action::Accept => "Accept".into(),
},
)
})
.collect::<Vec<_>>();
if !actions.is_empty() {
writeln!(f, "\tACTIONS:")?;
for (term, action) in actions {
writeln!(f, "\t\t{term} => {action}")?;
}
}
// GOTOs
let gotos = state
.gotos
.iter()
.enumerate()
.filter(|(_, g)| g.is_some())
.map(|(idx, g)| {
let g = g.unwrap();
(
self.grammar.nonterminals[NonTermIndex(idx)]
.name
.clone(),
format!(
"State {}:{}",
self.grammar.symbol_name(self.states[g].symbol),
g.0
),
)
})
.collect::<Vec<_>>();
if !gotos.is_empty() {
writeln!(f, "\tGOTOs:")?;
for (nonterm, goto) in gotos {
writeln!(f, "\t\t{nonterm} => {goto}")?;
}
}
}
Ok(())
}
}
/// Calculates the sets of terminals that can start the sentence derived from all
/// grammar symbols.
///
/// The Dragon book p. 221.
fn first_sets(grammar: &Grammar) -> FirstSets {
let mut first_sets = SymbolVec::new();
// First set for each terminal contains only the terminal itself.
for terminal in &grammar.terminals {
let mut new_set = Firsts::new();
new_set.insert(terminal.idx.symbol_index());
first_sets.push(new_set);
}
// Initialize empty sets for nonterminals
grammar
.nonterminals
.iter()
.for_each(|_| first_sets.push(Firsts::new()));
// EMPTY derives EMPTY
first_sets[grammar.empty_index].insert(grammar.empty_index);
let mut additions = true;
while additions {
additions = false;
for production in &grammar.productions {
let lhs_nonterm =
grammar.nonterm_to_symbol_index(production.nonterminal);
let rhs_firsts =
firsts(grammar, &first_sets, &production.rhs_symbols());
let lhs_len = first_sets[lhs_nonterm].len();
first_sets[lhs_nonterm].extend(rhs_firsts);
// Check if any addition is actually performed.
if lhs_len < first_sets[lhs_nonterm].len() {
additions = true
}
}
}
first_sets
}
/// For the given sequence of symbols finds a set of FIRST terminals.
///
/// Finds all terminals which can start the given sequence of symbols. Note that
/// if all symbols in the sequence can derive EMPTY, EMPTY will be a part of the
/// returned set.
fn firsts(
grammar: &Grammar,
first_sets: &FirstSets,
symbols: &[SymbolIndex],
) -> Firsts {
let mut firsts = Firsts::new();
let mut break_out = false;
for &symbol in symbols {
let symbol_firsts = &first_sets[symbol];
let mut empty = false;
for first in symbol_firsts {
if *first == grammar.empty_index {
empty = true;
} else {
firsts.insert(*first);
}
}
// We should proceed to the next symbol in sequence only if the current
// symbol can produce EMPTY.
if !empty {
break_out = true;
break;
}
}
if !break_out {
// If we reached the end of symbol sequence and each symbol along the
// way could derive EMPTY than we must add EMPTY to the firsts.
firsts.insert(grammar.empty_index);
}
firsts
}
/// Calculates the sets of terminals that can follow some non-terminal for the
/// given grammar.
///
/// The dragon book p.221
/// Currently unused
type Follow = BTreeSet<SymbolIndex>;
#[allow(dead_code)]
type FollowSets = SymbolVec<Follow>;
#[cfg(test)]
fn follow_sets(grammar: &Grammar, first_sets: &FirstSets) -> FollowSets {
let mut follow_sets = FollowSets::new();
for _ in 0..first_sets.len() {
follow_sets.push(Follow::new());
}
// Rule 1: Place $ in FOLLOW(S), where S is the start symbol, and $ is
// the input right endmarker.
follow_sets[grammar.augmented_index].insert(grammar.stop_index);
let mut additions = true;
while additions {
additions = false;
for production in &grammar.productions {
let lhs_symbol =
grammar.nonterm_to_symbol_index(production.nonterminal);
// Rule 2: If there is a production A -> α B β then everything in
// FIRST(β) except EMPTY is in FOLLOW(B).
for idx in 0..production.rhs.len() {
let rhs_symbol = production.rhs_symbol(idx);
let elements = follow_sets[rhs_symbol].len();
let mut break_out = false;
for rnext in &production.rhs[idx + 1..] {
let follow_symbols = &first_sets[res_symbol(rnext)];
follow_sets[rhs_symbol].extend(
follow_symbols
.iter()
.filter(|&&s| s != grammar.empty_index),
);
if !follow_symbols.contains(&grammar.empty_index) {
break_out = true;
break;
}
}
if !break_out {
// Rule 3: If all symbols right of current RHS produce EMPTY
// then this RHS symbol must contain all what follows symbol
// at LHS.
let lhs_follows: Follow =
follow_sets[lhs_symbol].iter().copied().collect();
follow_sets[rhs_symbol].extend(lhs_follows.iter());
}
if follow_sets[rhs_symbol].len() > elements {
additions = true
}
}
}
}
follow_sets
}
#[cfg(test)]
mod tests {
use std::cell::RefCell;
use std::collections::BTreeSet;
use crate::index::{ProdIndex, StateIndex, SymbolIndex};
use crate::table::{
first_sets, follow_sets, ItemIndex, LRTable, TableType,
};
use crate::{
grammar::Grammar,
output_cmp,
settings::Settings,
table::{Follow, LRItem},
};
use super::{production_rn_lengths, LRState};
fn follow<T, I>(indexes: T) -> BTreeSet<SymbolIndex>
where
T: IntoIterator<Item = I>,
I: Into<SymbolIndex>,
{
indexes.into_iter().map(|i| i.into()).collect()
}
fn test_grammar() -> Grammar {
r#"
E: T Ep;
Ep: "+" T Ep | EMPTY;
T: F Tp;
Tp: "*" F Tp | EMPTY;
F: "(" E ")" | "id";
terminals
Plus: "+";
Mul: "*";
LParen: "(";
RParen: ")";
id: "id";
"#
.parse()
.unwrap()
}
fn test_grammar_2() -> Grammar {
r#"
E: E "+" T | T;
T: T "*" F | F;
F: "(" E ")" | "id";
terminals
Plus: "+";
Mul: "*";
LParen: "(";
RParen: ")";
id: "id";
"#
.parse()
.unwrap()
}
/// Grammar from the Dragon book, p.278
/// This grammar is LR(1) but not LALR.
/// See also: https://www.gnu.org/software/bison/manual/bison.html#Mysterious-Conflicts
fn test_non_lalr_grammar() -> Grammar {
r#"
S: A "a" | "b" A "c" | B "c" | "b" B "a";
A: "d";
B: "d";
terminals
a_t: "a";
b_t: "b";
c_t: "c";
d_t: "d";
"#
.parse()
.unwrap()
}
fn test_ambiguous_grammar() -> Grammar {
r#"
E: E "+" E {1, left}
| E "*" E {2, left}
| E "^" E {3, right}
| "(" E ")"
| "id";
terminals
Plus: "+";
Mul: "*";
Power: "^";
LParen: "(";
RParen: ")";
id: "id";
"#
.parse()
.unwrap()
}
#[test]
fn test_first_sets() {
let grammar = test_grammar();
let first_sets = first_sets(&grammar);
assert_eq!(first_sets.len(), 13);
// First of terminal is just a terminal itself.
assert_eq!(
&first_sets[grammar.symbol_index("id")],
&follow(grammar.symbol_indexes(&["id"]))
);
assert_eq!(
&first_sets[grammar.symbol_index("F")],
&follow(grammar.symbol_indexes(&["LParen", "id"]))
);
assert_eq!(
&first_sets[grammar.symbol_index("T")],
&follow(grammar.symbol_indexes(&["LParen", "id"]))
);
assert_eq!(
&first_sets[grammar.symbol_index("E")],
&follow(grammar.symbol_indexes(&["LParen", "id"]))
);
assert_eq!(
&first_sets[grammar.symbol_index("Ep")],
&follow(grammar.symbol_indexes(&["Plus", "EMPTY"]))
);
assert_eq!(
&first_sets[grammar.symbol_index("Tp")],
&follow(grammar.symbol_indexes(&["Mul", "EMPTY"]))
);
}
#[test]
fn test_follow_sets() {
let grammar = test_grammar();
let follow_sets = follow_sets(&grammar, &first_sets(&grammar));
assert_eq!(
&follow_sets[grammar.symbol_index("E")],
&follow(grammar.symbol_indexes(&["RParen", "STOP"]))
);
dbg!(grammar
.symbol_names(follow_sets[grammar.symbol_index("Ep")].clone()));
assert_eq!(
&follow_sets[grammar.symbol_index("Ep")],
&follow(grammar.symbol_indexes(&["RParen", "STOP"]))
);
assert_eq!(
&follow_sets[grammar.symbol_index("T")],
&follow(grammar.symbol_indexes(&["Plus", "RParen", "STOP"]))
);
assert_eq!(
&follow_sets[grammar.symbol_index("Tp")],
&follow(grammar.symbol_indexes(&["Plus", "RParen", "STOP"]))
);
}
#[test]
fn test_prooduction_rn_lengths() {
let grammar = test_grammar();
let first_sets = first_sets(&grammar);
let production_rn_lengths =
production_rn_lengths(&first_sets, &grammar);
// RN length of "E: T Ep" is 1 as "Ep" can derive EMPTY but "T" can't.
assert_eq!(production_rn_lengths[ProdIndex(1)], 1);
// RN length of "Ep: "+" T Ep" is 2.
assert_eq!(production_rn_lengths[ProdIndex(2)], 2);
}
#[test]
fn test_symbol_at_position() {
let grammar = test_grammar();
let prod = ProdIndex(1);
let mut item = LRItem::new(&grammar, prod, None);
assert_eq!(
&grammar.symbol_names(grammar.productions[prod].rhs_symbols()),
&["T", "Ep"]
);
assert_eq!(
item.symbol_at_position(&grammar).unwrap(),
grammar.symbol_index("T")
);
item.position = 1;
assert_eq!(
&grammar.symbol_name(item.symbol_at_position(&grammar).unwrap()),
"Ep"
);
item.position = 2;
assert!(item.symbol_at_position(&grammar).is_none());
item.position = 3;
assert!(item.symbol_at_position(&grammar).is_none());
}
#[test]
fn test_group_per_next_symbol() {
let grammar = test_ambiguous_grammar();
// Create some LR state
let mut lr_state =
LRState::new(&grammar, 0.into(), grammar.symbol_index("E"))
.add_item(LRItem {
prod: 1.into(),
prod_len: grammar.production_len(1.into()),
rn_len: None,
position: 1,
follow: RefCell::new(Follow::new()),
})
.add_item(LRItem {
prod: 2.into(),
prod_len: grammar.production_len(2.into()),
rn_len: None,
position: 1,
follow: RefCell::new(Follow::new()),
})
.add_item(LRItem {
prod: 3.into(),
prod_len: grammar.production_len(2.into()),
rn_len: None,
position: 1,
follow: RefCell::new(Follow::new()),
})
.add_item(LRItem {
prod: 4.into(),
prod_len: grammar.production_len(3.into()),
rn_len: None,
position: 2,
follow: RefCell::new(Follow::new()),
});
let per_next_symbol = lr_state.group_per_next_symbol();
// log!("Symbols: {:#?}", grammar.symbol_names(per_next_symbol.keys()));
// Symbols: ["+", "*", ")"]
//log!("Pernext: {:?}", per_next_symbol);
// Pernext: {SymbolIndex(1): [ItemIndex(0)], SymbolIndex(2): [ItemIndex(1)], SymbolIndex(4): [ItemIndex(2)]}
// Check items grouping per symbol
assert_eq!(per_next_symbol.len(), 4);
assert_eq!(
per_next_symbol.keys().cloned().collect::<Vec<_>>(),
[1, 2, 3, 5]
.iter()
.map(|v| SymbolIndex(*v))
.collect::<Vec<_>>()
);
assert_eq!(
per_next_symbol.values().cloned().collect::<Vec<_>>(),
vec![
vec![0.into()],
vec![1.into()],
vec![2.into()],
vec![3.into()]
]
);
// Check production based term priorities
assert_eq!(
lr_state.max_prior_for_term
[&grammar.symbol_to_term_index(grammar.term_by_name["Power"])],
3
);
assert_eq!(
lr_state.max_prior_for_term
[&grammar.symbol_to_term_index(grammar.term_by_name["Mul"])],
2
);
assert_eq!(
lr_state.max_prior_for_term
[&grammar.symbol_to_term_index(grammar.term_by_name["Plus"])],
1
);
}
#[test]
fn test_merge_states() {
let grammar = test_grammar();
let lr_item_1 = LRItem {
prod: ProdIndex(1),
prod_len: 2,
rn_len: None,
position: 2,
follow: RefCell::new(Follow::new()),
};
let lr_item_2 = LRItem {
prod: ProdIndex(2),
prod_len: 3,
rn_len: None,
position: 3,
follow: RefCell::new(Follow::new()),
};
let old_state = LRState::new(&grammar, 0.into(), 0.into())
.add_item(LRItem {
follow: RefCell::new(follow([1, 3])),
..lr_item_1
})
.add_item(LRItem {
follow: RefCell::new(follow([2])),
..lr_item_2
});
// This should be merged as there are no introduced R/R conflicts
let new_state_1 = LRState::new(&grammar, 0.into(), 0.into())
.add_item(LRItem {
follow: RefCell::new(follow([1])),
..lr_item_1
})
.add_item(LRItem {
follow: RefCell::new(follow([2, 4])),
..lr_item_2
});
let mut old_state_1 = old_state.clone();
let settings = Settings::default();
assert!(LRTable::merge_state(
&settings,
&mut old_state_1,
&new_state_1
));
// When the merge succeed verify that items follows are indeed extended.
assert_eq!(
*old_state_1.items[ItemIndex(0)].follow.borrow(),
follow([1, 3])
);
assert_eq!(
*old_state_1.items[ItemIndex(1)].follow.borrow(),
follow([2, 4])
);
// This merge introduces new R/R conflict as the second item has 1 in
// the follow set. Term 1 exists in the first item of the old state so
// merging will make two items eligible for reduction on the term 1 in
// the input.
let new_state_2 = LRState::new(&grammar, 0.into(), 0.into())
.add_item(LRItem {
follow: RefCell::new(follow([3])),
..lr_item_1
})
.add_item(LRItem {
follow: RefCell::new(follow([2, 1])),
..lr_item_2
});
let mut old_state_2 = old_state.clone();
assert!(!LRTable::merge_state(
&settings,
&mut old_state_2,
&new_state_2
));
// Verify that no merge happened
assert_eq!(
*old_state_2.items[ItemIndex(0)].follow.borrow(),
follow([1, 3])
);
assert_eq!(
*old_state_2.items[ItemIndex(1)].follow.borrow(),
follow([2])
);
// The last thing to check is situation where new state has R/R
// conflicts and there are no additional merge introduced R/R conflicts.
// This time we should merge as the R/R conflict is not introduced by
// merge process but exists due to the grammar not being LR(1).
let new_state_3 = LRState::new(&grammar, 0.into(), 0.into())
.add_item(LRItem {
follow: RefCell::new(follow([1, 3])),
..lr_item_1
})
.add_item(LRItem {
follow: RefCell::new(follow([2, 1])),
..lr_item_2
});
let mut old_state_3 = old_state.clone();
assert!(LRTable::merge_state(
&settings,
&mut old_state_3,
&new_state_3
));
// Verify that no merge happened
assert_eq!(
*old_state_3.items[ItemIndex(0)].follow.borrow(),
follow([1, 3])
);
assert_eq!(
*old_state_3.items[ItemIndex(1)].follow.borrow(),
follow([2, 1])
);
}
#[test]
fn test_closure() {
let grammar = test_grammar();
let firsts = first_sets(&grammar);
// Create some LR state
let mut lr_state =
LRState::new(&grammar, StateIndex(0), grammar.symbol_index("T"))
.add_item(LRItem::with_follow(
&grammar,
ProdIndex(1),
None,
follow([grammar.stop_index]),
));
lr_state.closure(&firsts, &None);
let prods = [1, 4, 7, 8];
let follow_sets = [
grammar.symbol_indexes(&["STOP"]),
grammar.symbol_indexes(&["STOP", "Plus"]),
grammar.symbol_indexes(&["STOP", "Plus", "Mul"]),
grammar.symbol_indexes(&["STOP", "Plus", "Mul"]),
];
assert_eq!(lr_state.items.len(), 4);
itertools::izip!(&lr_state.items, prods, follow_sets).for_each(
|(item, prod, follows)| {
assert_eq!(item.prod, prod.into());
assert!(item.follow.borrow().iter().eq(follows.iter()));
},
);
log!("{:?}", lr_state);
}
#[test]
fn test_lr_states_for_grammar_2() {
let grammar = test_grammar_2();
let settings = Settings {
table_type: TableType::LALR,
..Settings::default()
};
let table = LRTable::new(&grammar, &settings).unwrap();
output_cmp!(
"src/table/grammar_2.expected",
format!("{:#?}", table.states)
);
}
#[test]
fn test_lr_states_for_non_lalr_grammar() {
let grammar = test_non_lalr_grammar();
// Calculating LR tables with LALR method will result in a state with
// R/R conflicts. So, deterministic LR parsing method cannot be used for
// this grammar and LALR construction method.
//
// Conflicts are found in state 2 which is entered when 'd' is
// recognized in the input. There are two R/R conflicts, for inputs 'a'
// and 'c'. In both case parser may reduce both A and B.
let settings = Settings {
table_type: TableType::LALR,
..Settings::default()
};
let table = LRTable::new(&grammar, &settings).unwrap();
output_cmp!(
"src/table/grammar_nonlalr_lalr.expected",
format!("{grammar}\n\n{:#?}", table.states)
);
// In LALR_PAGERW construction method R/R conflicts are avoided during
// merge phase where states are kept split if merging would introduce
// new R/R conflict. This essentially makes LALR_PAGERW very close in
// power to canonical LR(1) but with the number of states which is
// almost like in LALR (i.e. LR(0)).
//
// In this case we have 13 states while in previous LALR case there was
// 12 states.
let settings = Settings {
table_type: TableType::LALR_PAGERW,
..Settings::default()
};
let table = LRTable::new(&grammar, &settings).unwrap();
output_cmp!(
"src/table/grammar_nonlalr_lalr_pagerw.expected",
format!("{grammar}\n\n{:#?}", table.states)
);
}
#[test]
fn test_sorted_terminals() {
let grammar: Grammar = r#"
S: A | C | B;
terminals
A: /\d+/;
B: "bb";
C: "c";
"#
.parse()
.unwrap();
let settings = Settings {
table_type: TableType::LALR_PAGERW,
..Settings::default()
};
let table = LRTable::new(&grammar, &settings).unwrap();
assert_eq!(
&table.states[StateIndex(0)]
.sorted_terminals
.iter()
.map(|i| i.0)
.collect::<Vec<_>>(),
&vec![2, 3, 1]
);
}
}