Module algorithm
Source - type2and3_butterflies
- Dct1ConvertToFft
- DCT Type 1 implementation that converts the problem into a FFT of size 2 * (n - 1)
- Dct1Naive
- Naive O(n^2 ) DCT Type 1 implementation
- Dct5Naive
- Naive O(n^2 ) DCT Type 5 implementation
- Dct6And7Naive
- Naive O(n^2 ) DCT Type 6 and DCT Type 7 implementation
- Dct8Naive
- Naive O(n^2 ) DCT Type 8 implementation
- Dst1ConvertToFft
- DST Type 1 implementation that converts the problem into a FFT of size 2 * (n + 1)
- Dst1Naive
- Naive O(n^2 ) DST Type 1 implementation
- Dst5Naive
- Naive O(n^2 ) DST Type 5 implementation
- Dst6And7ConvertToFft
- DST6 and DST7 implementation that converts the problem into a FFT of the same size
- Dst6And7Naive
- Naive O(n^2 ) DST Type 6 and DST Type 7 implementation
- Dst8Naive
- Naive O(n^2 ) DST Type 8 implementation
- Type2And3ConvertToFft
- DCT2, DST2, DCT3, and DST3 implementation that converts the problem into a FFT of the same size
- Type2And3Naive
- Naive O(n^2 ) DCT Type 2, DST Type 2, DCT Type 3, and DST Type 3 implementation
- Type2And3SplitRadix
- DCT2, DCT3, DST2, and DST3 implemention that recursively divides the problem in half.
- Type4ConvertToFftOdd
- DCT Type 4 and DST Type 4 implementation that converts the problem into a FFT of the same size.
- Type4ConvertToType3Even
- DCT4 and DST4 implementation that converts the problem into two DCT3 of half size.
- Type4Naive
- Naive O(n^2 ) DCT Type 4 and DST Type 4 implementation