1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
use crate::{Arc, BTreeMap, Data, Mutex, Storage};
use std::cmp::min;
/// Slice of Data to be written to storage.
struct DataSlice {
off: usize,
len: usize,
data: Data,
}
/// AtomicFile makes sure that database updates are all-or-nothing.
/// Keeps a map of outstanding writes which have not yet been written to the underlying file.
pub struct AtomicFile {
/// The main underlying storage.
pub stg: Box<dyn Storage>,
/// Temporary storage for updates during commit.
pub upd: Box<dyn Storage>,
/// Map of existing outstanding writes. Note the key is the file address of the last byte written.
map: Mutex<BTreeMap<u64, DataSlice>>,
}
impl AtomicFile {
/// Construct a new AtomicFle. stg is the main underlying storage, upd is temporary storage for updates during commit.
pub fn new(stg: Box<dyn Storage>, upd: Box<dyn Storage>) -> Box<Self> {
let result = Self {
map: Mutex::new(BTreeMap::new()),
stg,
upd,
};
result.init();
Box::new(result)
}
/// Apply outstanding updates.
fn init(&self) {
let end = self.upd.read_u64(0);
let size = self.upd.read_u64(8);
if end == 0 {
return;
}
assert!(end == self.upd.size());
let mut pos = 16;
while pos < end {
let start = self.upd.read_u64(pos);
pos += 8;
let len = self.upd.read_u64(pos);
pos += 8;
let mut buf = vec![0; len as usize];
self.upd.read(pos, &mut buf);
pos += len;
self.stg.write(start, &buf);
}
self.stg.commit(size);
self.upd.commit(0);
}
/// Perform the specified phase ( 1 or 2 ) of a two-phase commit.
pub fn commit_phase(&self, size: u64, phase: u8) {
let mut map = self.map.lock().unwrap();
if map.is_empty() {
return;
}
if phase == 1 {
// Write the updates to upd.
// First set the end position to zero.
self.upd.write_u64(0, 0);
self.upd.write_u64(8, size);
self.upd.commit(16); // Not clear if this is necessary.
// Write the update records.
let mut pos: u64 = 16;
for (k, v) in map.iter() {
let start = k + 1 - v.len as u64;
let len = v.len as u64;
self.upd.write_u64(pos, start);
pos += 8;
self.upd.write_u64(pos, len);
pos += 8;
self.upd.write(pos, &v.data[v.off..v.off + v.len]);
pos += len;
}
self.upd.commit(pos); // Not clear if this is necessary.
// Set the end position.
self.upd.write_u64(0, pos);
self.upd.write_u64(8, size);
self.upd.commit(pos);
} else {
for (k, v) in map.iter() {
let start = k + 1 - v.len as u64;
self.stg.write(start, &v.data[v.off..v.off + v.len]);
}
map.clear();
self.stg.commit(size);
self.upd.commit(0);
}
}
}
impl Storage for AtomicFile {
fn commit(&self, size: u64) {
self.commit_phase(size, 1);
self.commit_phase(size, 2);
}
fn size(&self) -> u64 {
self.stg.size()
}
fn read(&self, start: u64, data: &mut [u8]) {
let mut todo: usize = data.len();
if todo == 0 {
return;
}
let mut done: usize = 0;
let map = self.map.lock().unwrap();
for (&k, v) in map.range(start..) {
let estart = k + 1 - v.len as u64;
if estart > start + done as u64 {
let lim = (estart - (start + done as u64)) as usize;
let amount = min(todo, lim);
self.stg
.read(start + done as u64, &mut data[done..done + amount]);
done += amount;
todo -= amount;
}
if estart > start + data.len() as u64 {
break;
} else {
let skip = (start + done as u64 - estart) as usize;
let amount = min(todo, v.len - skip);
data[done..done + amount]
.copy_from_slice(&v.data[v.off + skip..v.off + skip + amount]);
done += amount;
todo -= amount;
}
if todo == 0 {
break;
}
}
if todo > 0 {
self.stg
.read(start + done as u64, &mut data[done..done + todo]);
}
}
fn write_data(&self, start: u64, data: Data, off: usize, len: usize) {
if len == 0 {
return;
}
// Existing writes which overlap with new write need to be trimmed or removed.
let mut remove = Vec::new();
let mut add = Vec::new();
let end = start + len as u64;
let mut map = self.map.lock().unwrap();
for (&k, v) in map.range_mut(start..) {
let eend = k + 1; // end of existing write.
let estart = eend - v.len as u64; // start of existing write.
// (a) New write ends before existing write.
if end <= estart {
break;
}
// (b) New write subsumes existing write entirely, remove existing write.
else if start <= estart && end >= eend {
remove.push(eend - 1);
}
// (c) New write starts before existing write, but doesn't subsume it. Trim existing write.
else if start <= estart {
let trim = (end - estart) as usize;
v.len -= trim;
v.off += trim;
}
// (d) New write starts in middle of existing write, ends before end of existing write...
// .. put start of existing write in add list, trim existing write.
else if start > estart && end < eend {
let remain = (start - estart) as usize;
add.push((estart, v.data.clone(), v.off, remain));
let trim = (end - estart) as usize;
v.len -= trim;
v.off += trim;
}
// (e) New write starts in middle of existing write, ends after existing write...
// ... put start of existing write in add list, remove existing write,
else {
let remain = (start - estart) as usize;
add.push((estart, v.data.clone(), v.off, remain));
remove.push(eend - 1);
}
}
for k in remove {
map.remove(&k);
}
for (start, data, off, len) in add {
map.insert(start + len as u64 - 1, DataSlice { data, off, len });
}
map.insert(start + len as u64 - 1, DataSlice { data, off, len });
}
fn write(&self, start: u64, data: &[u8]) {
let len = data.len();
let d = Arc::new(data.to_vec());
self.write_data(start, d, 0, len);
}
}
#[test]
pub fn test() {
use crate::stg::MemFile;
use rand::Rng;
/* Idea of test is to check AtomicFile and MemFile behave the same */
let mut rng = rand::thread_rng();
for _ in 0..100 {
let s0 = Box::new(MemFile::default());
let s1 = Box::new(MemFile::default());
let s2 = AtomicFile::new(s0, s1);
let s3 = MemFile::default();
for _ in 0..1000 {
let off: usize = rng.gen::<usize>() % 100;
let mut len = 1 + rng.gen::<usize>() % 20;
let w: bool = rng.gen();
if w {
let mut bytes = Vec::new();
while len > 0 {
len -= 1;
let b: u8 = rng.gen::<u8>();
bytes.push(b);
}
s2.write(off as u64, &bytes);
s3.write(off as u64, &bytes);
} else {
let mut b2 = vec![0; len];
let mut b3 = vec![0; len];
s2.read(off as u64, &mut b2);
s3.read(off as u64, &mut b3);
assert!(b2 == b3);
}
}
}
}