rustc_stable_hash/
sip128.rs

1//! This is a copy of `core::hash::sip` adapted to providing 128 bit hashes.
2
3// This code is very hot and uses lots of arithmetic, avoid overflow checks for performance.
4// See https://github.com/rust-lang/rust/pull/119440#issuecomment-1874255727
5use crate::int_overflow::{DebugStrictAdd, DebugStrictSub};
6use crate::ExtendedHasher;
7
8use std::hash::Hasher;
9use std::mem::{self, MaybeUninit};
10use std::ptr;
11
12#[cfg(test)]
13mod tests;
14
15// The SipHash algorithm operates on 8-byte chunks.
16const ELEM_SIZE: usize = mem::size_of::<u64>();
17
18// Size of the buffer in number of elements, not including the spill.
19//
20// The selection of this size was guided by rustc-perf benchmark comparisons of
21// different buffer sizes. It should be periodically reevaluated as the compiler
22// implementation and input characteristics change.
23//
24// Using the same-sized buffer for everything we hash is a performance versus
25// complexity tradeoff. The ideal buffer size, and whether buffering should even
26// be used, depends on what is being hashed. It may be worth it to size the
27// buffer appropriately (perhaps by making SipHasher128 generic over the buffer
28// size) or disable buffering depending on what is being hashed. But at this
29// time, we use the same buffer size for everything.
30const BUFFER_CAPACITY: usize = 8;
31
32// Size of the buffer in bytes, not including the spill.
33const BUFFER_SIZE: usize = BUFFER_CAPACITY * ELEM_SIZE;
34
35// Size of the buffer in number of elements, including the spill.
36const BUFFER_WITH_SPILL_CAPACITY: usize = BUFFER_CAPACITY + 1;
37
38// Size of the buffer in bytes, including the spill.
39const BUFFER_WITH_SPILL_SIZE: usize = BUFFER_WITH_SPILL_CAPACITY * ELEM_SIZE;
40
41// Index of the spill element in the buffer.
42const BUFFER_SPILL_INDEX: usize = BUFFER_WITH_SPILL_CAPACITY - 1;
43
44/// Hashing result of [`SipHasher128`]
45#[derive(Debug, Clone, Copy, PartialEq, Eq)]
46pub struct SipHasher128Hash(pub [u64; 2]);
47
48#[derive(Debug, Clone)]
49#[repr(C)]
50pub struct SipHasher128 {
51    // The access pattern during hashing consists of accesses to `nbuf` and
52    // `buf` until the buffer is full, followed by accesses to `state` and
53    // `processed`, and then repetition of that pattern until hashing is done.
54    // This is the basis for the ordering of fields below. However, in practice
55    // the cache miss-rate for data access is extremely low regardless of order.
56    nbuf: usize, // how many bytes in buf are valid
57    buf: [MaybeUninit<u64>; BUFFER_WITH_SPILL_CAPACITY], // unprocessed bytes le
58    state: State, // hash State
59    processed: usize, // how many bytes we've processed
60}
61
62#[derive(Debug, Clone, Copy)]
63#[repr(C)]
64struct State {
65    // v0, v2 and v1, v3 show up in pairs in the algorithm,
66    // and simd implementations of SipHash will use vectors
67    // of v02 and v13. By placing them in this order in the struct,
68    // the compiler can pick up on just a few simd optimizations by itself.
69    v0: u64,
70    v2: u64,
71    v1: u64,
72    v3: u64,
73}
74
75macro_rules! compress {
76    ($state:expr) => {{
77        compress!($state.v0, $state.v1, $state.v2, $state.v3)
78    }};
79    ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => {{
80        $v0 = $v0.wrapping_add($v1);
81        $v2 = $v2.wrapping_add($v3);
82        $v1 = $v1.rotate_left(13);
83        $v1 ^= $v0;
84        $v3 = $v3.rotate_left(16);
85        $v3 ^= $v2;
86        $v0 = $v0.rotate_left(32);
87
88        $v2 = $v2.wrapping_add($v1);
89        $v0 = $v0.wrapping_add($v3);
90        $v1 = $v1.rotate_left(17);
91        $v1 ^= $v2;
92        $v3 = $v3.rotate_left(21);
93        $v3 ^= $v0;
94        $v2 = $v2.rotate_left(32);
95    }};
96}
97
98// Copies up to 8 bytes from source to destination. This performs better than
99// `ptr::copy_nonoverlapping` on microbenchmarks and may perform better on real
100// workloads since all of the copies have fixed sizes and avoid calling memcpy.
101//
102// This is specifically designed for copies of up to 8 bytes, because that's the
103// maximum of number bytes needed to fill an 8-byte-sized element on which
104// SipHash operates. Note that for variable-sized copies which are known to be
105// less than 8 bytes, this function will perform more work than necessary unless
106// the compiler is able to optimize the extra work away.
107#[inline]
108unsafe fn copy_nonoverlapping_small(src: *const u8, dst: *mut u8, count: usize) {
109    debug_assert!(count <= 8);
110
111    unsafe {
112        if count == 8 {
113            ptr::copy_nonoverlapping(src, dst, 8);
114            return;
115        }
116
117        let mut i = 0;
118        if i.debug_strict_add(3) < count {
119            ptr::copy_nonoverlapping(src.add(i), dst.add(i), 4);
120            i = i.debug_strict_add(4);
121        }
122
123        if i.debug_strict_add(1) < count {
124            ptr::copy_nonoverlapping(src.add(i), dst.add(i), 2);
125            i = i.debug_strict_add(2)
126        }
127
128        if i < count {
129            *dst.add(i) = *src.add(i);
130            i = i.debug_strict_add(1);
131        }
132
133        debug_assert_eq!(i, count);
134    }
135}
136
137// # Implementation
138//
139// This implementation uses buffering to reduce the hashing cost for inputs
140// consisting of many small integers. Buffering simplifies the integration of
141// integer input--the integer write function typically just appends to the
142// buffer with a statically sized write, updates metadata, and returns.
143//
144// Buffering also prevents alternating between writes that do and do not trigger
145// the hashing process. Only when the entire buffer is full do we transition
146// into hashing. This allows us to keep the hash state in registers for longer,
147// instead of loading and storing it before and after processing each element.
148//
149// When a write fills the buffer, a buffer processing function is invoked to
150// hash all of the buffered input. The buffer processing functions are marked
151// `#[inline(never)]` so that they aren't inlined into the append functions,
152// which ensures the more frequently called append functions remain inlineable
153// and don't include register pushing/popping that would only be made necessary
154// by inclusion of the complex buffer processing path which uses those
155// registers.
156//
157// The buffer includes a "spill"--an extra element at the end--which simplifies
158// the integer write buffer processing path. The value that fills the buffer can
159// be written with a statically sized write that may spill over into the spill.
160// After the buffer is processed, the part of the value that spilled over can be
161// written from the spill to the beginning of the buffer with another statically
162// sized write. This write may copy more bytes than actually spilled over, but
163// we maintain the metadata such that any extra copied bytes will be ignored by
164// subsequent processing. Due to the static sizes, this scheme performs better
165// than copying the exact number of bytes needed into the end and beginning of
166// the buffer.
167//
168// The buffer is uninitialized, which improves performance, but may preclude
169// efficient implementation of alternative approaches. The improvement is not so
170// large that an alternative approach should be disregarded because it cannot be
171// efficiently implemented with an uninitialized buffer. On the other hand, an
172// uninitialized buffer may become more important should a larger one be used.
173//
174// # Platform Dependence
175//
176// The SipHash algorithm operates on byte sequences. It parses the input stream
177// as 8-byte little-endian integers. Therefore, given the same byte sequence, it
178// produces the same result on big- and little-endian hardware.
179//
180// However, the Hasher trait has methods which operate on multi-byte integers.
181// How they are converted into byte sequences can be endian-dependent (by using
182// native byte order) or independent (by consistently using either LE or BE byte
183// order). It can also be `isize` and `usize` size dependent (by using the
184// native size), or independent (by converting to a common size), supposing the
185// values can be represented in 32 bits.
186//
187// In order to make `SipHasher128` consistent with `SipHasher` in libstd, we
188// choose to do the integer to byte sequence conversion in the platform-
189// dependent way. Clients can achieve platform-independent hashing by widening
190// `isize` and `usize` integers to 64 bits on 32-bit systems and byte-swapping
191// integers on big-endian systems before passing them to the writing functions.
192// This causes the input byte sequence to look identical on big- and little-
193// endian systems (supposing `isize` and `usize` values can be represented in 32
194// bits), which ensures platform-independent results.
195impl SipHasher128 {
196    #[inline]
197    pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher128 {
198        let mut hasher = SipHasher128 {
199            nbuf: 0,
200            // HACK: Manual MaybeUninit::uninit_array, use inline const with Rust 1.79
201            buf: unsafe {
202                MaybeUninit::<[MaybeUninit<_>; BUFFER_WITH_SPILL_CAPACITY]>::uninit().assume_init()
203            },
204            state: State {
205                v0: key0 ^ 0x736f6d6570736575,
206                // The XOR with 0xee is only done on 128-bit algorithm version.
207                v1: key1 ^ (0x646f72616e646f6d ^ 0xee),
208                v2: key0 ^ 0x6c7967656e657261,
209                v3: key1 ^ 0x7465646279746573,
210            },
211            processed: 0,
212        };
213
214        unsafe {
215            // Initialize spill because we read from it in `short_write_process_buffer`.
216            *hasher.buf.get_unchecked_mut(BUFFER_SPILL_INDEX) = MaybeUninit::zeroed();
217        }
218
219        hasher
220    }
221
222    // A specialized write function for values with size <= 8 that should only
223    // be called when the write would cause the buffer to fill.
224    //
225    // SAFETY: the write of `x` into `self.buf` starting at byte offset
226    // `self.nbuf` must cause `self.buf` to become fully initialized (and not
227    // overflow) if it wasn't already.
228    #[inline(never)]
229    unsafe fn short_write_process_buffer<const LEN: usize>(&mut self, bytes: [u8; LEN]) {
230        unsafe {
231            let nbuf = self.nbuf;
232            debug_assert!(LEN <= 8);
233            debug_assert!(nbuf < BUFFER_SIZE);
234            debug_assert!(nbuf + LEN >= BUFFER_SIZE);
235            debug_assert!(nbuf + LEN < BUFFER_WITH_SPILL_SIZE);
236
237            // Copy first part of input into end of buffer, possibly into spill
238            // element. The memcpy call is optimized away because the size is known.
239            let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf);
240            ptr::copy_nonoverlapping(bytes.as_ptr(), dst, LEN);
241
242            // Process buffer.
243            for i in 0..BUFFER_CAPACITY {
244                let elem = self.buf.get_unchecked(i).assume_init().to_le();
245                self.state.v3 ^= elem;
246                Sip13Rounds::c_rounds(&mut self.state);
247                self.state.v0 ^= elem;
248            }
249
250            // Copy remaining input into start of buffer by copying LEN - 1
251            // elements from spill (at most LEN - 1 bytes could have overflowed
252            // into the spill). The memcpy call is optimized away because the size
253            // is known. And the whole copy is optimized away for LEN == 1.
254            let dst = self.buf.as_mut_ptr() as *mut u8;
255            let src = self.buf.get_unchecked(BUFFER_SPILL_INDEX) as *const _ as *const u8;
256            ptr::copy_nonoverlapping(src, dst, LEN - 1);
257
258            // This function should only be called when the write fills the buffer.
259            // Therefore, when LEN == 1, the new `self.nbuf` must be zero.
260            // LEN is statically known, so the branch is optimized away.
261            self.nbuf = if LEN == 1 {
262                0
263            } else {
264                nbuf.debug_strict_add(LEN).debug_strict_sub(BUFFER_SIZE)
265            };
266            self.processed = self.processed.debug_strict_add(BUFFER_SIZE);
267        }
268    }
269
270    // A write function for byte slices.
271    #[inline]
272    fn slice_write(&mut self, msg: &[u8]) {
273        let length = msg.len();
274        let nbuf = self.nbuf;
275        debug_assert!(nbuf < BUFFER_SIZE);
276
277        if nbuf.debug_strict_add(length) < BUFFER_SIZE {
278            unsafe {
279                let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf);
280
281                if length <= 8 {
282                    copy_nonoverlapping_small(msg.as_ptr(), dst, length);
283                } else {
284                    // This memcpy is *not* optimized away.
285                    ptr::copy_nonoverlapping(msg.as_ptr(), dst, length);
286                }
287            }
288
289            self.nbuf = nbuf.debug_strict_add(length);
290
291            return;
292        }
293
294        unsafe { self.slice_write_process_buffer(msg) }
295    }
296
297    // A write function for byte slices that should only be called when the
298    // write would cause the buffer to fill.
299    //
300    // SAFETY: `self.buf` must be initialized up to the byte offset `self.nbuf`,
301    // and `msg` must contain enough bytes to initialize the rest of the element
302    // containing the byte offset `self.nbuf`.
303    #[inline(never)]
304    unsafe fn slice_write_process_buffer(&mut self, msg: &[u8]) {
305        unsafe {
306            let length = msg.len();
307            let nbuf = self.nbuf;
308            debug_assert!(nbuf < BUFFER_SIZE);
309            debug_assert!(nbuf + length >= BUFFER_SIZE);
310
311            // Always copy first part of input into current element of buffer.
312            // This function should only be called when the write fills the buffer,
313            // so we know that there is enough input to fill the current element.
314            let valid_in_elem = nbuf % ELEM_SIZE;
315            let needed_in_elem = ELEM_SIZE.debug_strict_sub(valid_in_elem);
316
317            let src = msg.as_ptr();
318            let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf);
319            copy_nonoverlapping_small(src, dst, needed_in_elem);
320
321            // Process buffer.
322
323            // Using `nbuf / ELEM_SIZE + 1` rather than `(nbuf + needed_in_elem) /
324            // ELEM_SIZE` to show the compiler that this loop's upper bound is > 0.
325            // We know that is true, because last step ensured we have a full
326            // element in the buffer.
327            let last = (nbuf / ELEM_SIZE).debug_strict_add(1);
328
329            for i in 0..last {
330                let elem = self.buf.get_unchecked(i).assume_init().to_le();
331                self.state.v3 ^= elem;
332                Sip13Rounds::c_rounds(&mut self.state);
333                self.state.v0 ^= elem;
334            }
335
336            // Process the remaining element-sized chunks of input.
337            let mut processed = needed_in_elem;
338            let input_left = length.debug_strict_sub(processed);
339            let elems_left = input_left / ELEM_SIZE;
340            let extra_bytes_left = input_left % ELEM_SIZE;
341
342            for _ in 0..elems_left {
343                let elem = (msg.as_ptr().add(processed) as *const u64)
344                    .read_unaligned()
345                    .to_le();
346                self.state.v3 ^= elem;
347                Sip13Rounds::c_rounds(&mut self.state);
348                self.state.v0 ^= elem;
349                processed = processed.debug_strict_add(ELEM_SIZE);
350            }
351
352            // Copy remaining input into start of buffer.
353            let src = msg.as_ptr().add(processed);
354            let dst = self.buf.as_mut_ptr() as *mut u8;
355            copy_nonoverlapping_small(src, dst, extra_bytes_left);
356
357            self.nbuf = extra_bytes_left;
358            self.processed = self
359                .processed
360                .debug_strict_add(nbuf.debug_strict_add(processed));
361        }
362    }
363
364    // A function for finishing the hashing.
365    //
366    // SAFETY: `buf` must be initialized up to the byte offset `nbuf`.
367    #[inline]
368    unsafe fn finish128_inner(
369        nbuf: usize,
370        buf: &mut [MaybeUninit<u64>; BUFFER_WITH_SPILL_CAPACITY],
371        mut state: State,
372        processed: usize,
373    ) -> [u64; 2] {
374        debug_assert!(nbuf < BUFFER_SIZE);
375
376        // Process full elements in buffer.
377        let last = nbuf / ELEM_SIZE;
378
379        for i in 0..last {
380            let elem = unsafe { buf.get_unchecked(i).assume_init().to_le() };
381            state.v3 ^= elem;
382            Sip13Rounds::c_rounds(&mut state);
383            state.v0 ^= elem;
384        }
385
386        // Get remaining partial element.
387        let elem = if nbuf % ELEM_SIZE != 0 {
388            unsafe {
389                // Ensure element is initialized by writing zero bytes. At most
390                // `ELEM_SIZE - 1` are required given the above check. It's safe
391                // to write this many because we have the spill and we maintain
392                // `self.nbuf` such that this write will start before the spill.
393                let dst = (buf.as_mut_ptr() as *mut u8).add(nbuf);
394                ptr::write_bytes(dst, 0, ELEM_SIZE - 1);
395                buf.get_unchecked(last).assume_init().to_le()
396            }
397        } else {
398            0
399        };
400
401        // Finalize the hash.
402        let length = processed.debug_strict_add(nbuf);
403        let b: u64 = ((length as u64 & 0xff) << 56) | elem;
404
405        state.v3 ^= b;
406        Sip13Rounds::c_rounds(&mut state);
407        state.v0 ^= b;
408
409        state.v2 ^= 0xee;
410        Sip13Rounds::d_rounds(&mut state);
411        let l = state.v0 ^ state.v1 ^ state.v2 ^ state.v3;
412
413        state.v1 ^= 0xdd;
414        Sip13Rounds::d_rounds(&mut state);
415        let h = state.v0 ^ state.v1 ^ state.v2 ^ state.v3;
416
417        [l, h]
418    }
419}
420
421impl Default for SipHasher128 {
422    fn default() -> SipHasher128 {
423        SipHasher128::new_with_keys(0, 0)
424    }
425}
426
427impl ExtendedHasher for SipHasher128 {
428    type Hash = SipHasher128Hash;
429
430    #[inline]
431    fn short_write<const LEN: usize>(&mut self, bytes: [u8; LEN]) {
432        let nbuf = self.nbuf;
433        debug_assert!(LEN <= 8);
434        debug_assert!(nbuf < BUFFER_SIZE);
435        debug_assert!(nbuf + LEN < BUFFER_WITH_SPILL_SIZE);
436
437        if nbuf.debug_strict_add(LEN) < BUFFER_SIZE {
438            unsafe {
439                // The memcpy call is optimized away because the size is known.
440                let dst = (self.buf.as_mut_ptr() as *mut u8).add(nbuf);
441                ptr::copy_nonoverlapping(bytes.as_ptr(), dst, LEN);
442            }
443
444            self.nbuf = nbuf.debug_strict_add(LEN);
445
446            return;
447        }
448
449        unsafe { self.short_write_process_buffer(bytes) }
450    }
451
452    #[inline(always)]
453    fn finish(mut self) -> SipHasher128Hash {
454        SipHasher128Hash(unsafe {
455            SipHasher128::finish128_inner(self.nbuf, &mut self.buf, self.state, self.processed)
456        })
457    }
458}
459
460impl Hasher for SipHasher128 {
461    #[inline]
462    fn write_u8(&mut self, i: u8) {
463        self.short_write(i.to_ne_bytes());
464    }
465
466    #[inline]
467    fn write_u16(&mut self, i: u16) {
468        self.short_write(i.to_ne_bytes());
469    }
470
471    #[inline]
472    fn write_u32(&mut self, i: u32) {
473        self.short_write(i.to_ne_bytes());
474    }
475
476    #[inline]
477    fn write_u64(&mut self, i: u64) {
478        self.short_write(i.to_ne_bytes());
479    }
480
481    #[inline]
482    fn write_usize(&mut self, i: usize) {
483        self.short_write(i.to_ne_bytes());
484    }
485
486    #[inline]
487    fn write_i8(&mut self, i: i8) {
488        self.short_write((i as u8).to_ne_bytes());
489    }
490
491    #[inline]
492    fn write_i16(&mut self, i: i16) {
493        self.short_write((i as u16).to_ne_bytes());
494    }
495
496    #[inline]
497    fn write_i32(&mut self, i: i32) {
498        self.short_write((i as u32).to_ne_bytes());
499    }
500
501    #[inline]
502    fn write_i64(&mut self, i: i64) {
503        self.short_write((i as u64).to_ne_bytes());
504    }
505
506    #[inline]
507    fn write_isize(&mut self, i: isize) {
508        self.short_write((i as usize).to_ne_bytes());
509    }
510
511    #[inline]
512    fn write(&mut self, msg: &[u8]) {
513        self.slice_write(msg);
514    }
515
516    #[cfg(feature = "nightly")]
517    #[inline]
518    fn write_str(&mut self, s: &str) {
519        // This hasher works byte-wise, and `0xFF` cannot show up in a `str`,
520        // so just hashing the one extra byte is enough to be prefix-free.
521        self.write(s.as_bytes());
522        self.write_u8(0xFF);
523    }
524
525    fn finish(&self) -> u64 {
526        let mut buf = self.buf;
527        let [a, b] = unsafe {
528            SipHasher128::finish128_inner(self.nbuf, &mut buf, self.state, self.processed)
529        };
530
531        // Combining the two halves makes sure we get a good quality hash.
532        a.wrapping_mul(3).wrapping_add(b)
533    }
534}
535
536#[derive(Debug, Clone, Default)]
537struct Sip13Rounds;
538
539impl Sip13Rounds {
540    #[inline]
541    fn c_rounds(state: &mut State) {
542        compress!(state);
543    }
544
545    #[inline]
546    fn d_rounds(state: &mut State) {
547        compress!(state);
548        compress!(state);
549        compress!(state);
550    }
551}