use super::{Parser, PResult, Restrictions, PrevTokenKind, TokenType, PathStyle};
use super::{BlockMode, SemiColonMode};
use super::{SeqSep, TokenExpectType};
use crate::maybe_recover_from_interpolated_ty_qpath;
use crate::ptr::P;
use crate::ast::{self, Attribute, AttrStyle, Ident, CaptureBy, BlockCheckMode};
use crate::ast::{Expr, ExprKind, RangeLimits, Label, Movability, IsAsync, Arm};
use crate::ast::{Ty, TyKind, FunctionRetTy, Arg, FnDecl};
use crate::ast::{BinOpKind, BinOp, UnOp};
use crate::ast::{Mac, AnonConst, Field};
use crate::parse::classify;
use crate::parse::token::{self, Token};
use crate::parse::diagnostics::{Error};
use crate::print::pprust;
use crate::source_map::{self, Span};
use crate::symbol::{kw, sym};
use crate::util::parser::{AssocOp, Fixity, prec_let_scrutinee_needs_par};
use std::mem;
use errors::Applicability;
use rustc_data_structures::thin_vec::ThinVec;
macro_rules! maybe_whole_expr {
    ($p:expr) => {
        if let token::Interpolated(nt) = &$p.token.kind {
            match &**nt {
                token::NtExpr(e) | token::NtLiteral(e) => {
                    let e = e.clone();
                    $p.bump();
                    return Ok(e);
                }
                token::NtPath(path) => {
                    let path = path.clone();
                    $p.bump();
                    return Ok($p.mk_expr(
                        $p.token.span, ExprKind::Path(None, path), ThinVec::new()
                    ));
                }
                token::NtBlock(block) => {
                    let block = block.clone();
                    $p.bump();
                    return Ok($p.mk_expr(
                        $p.token.span, ExprKind::Block(block, None), ThinVec::new()
                    ));
                }
                
                _ => {},
            };
        }
    }
}
#[derive(Debug)]
pub(super) enum LhsExpr {
    NotYetParsed,
    AttributesParsed(ThinVec<Attribute>),
    AlreadyParsed(P<Expr>),
}
impl From<Option<ThinVec<Attribute>>> for LhsExpr {
    fn from(o: Option<ThinVec<Attribute>>) -> Self {
        if let Some(attrs) = o {
            LhsExpr::AttributesParsed(attrs)
        } else {
            LhsExpr::NotYetParsed
        }
    }
}
impl From<P<Expr>> for LhsExpr {
    fn from(expr: P<Expr>) -> Self {
        LhsExpr::AlreadyParsed(expr)
    }
}
impl<'a> Parser<'a> {
    
    #[inline]
    pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
        self.parse_expr_res(Restrictions::empty(), None)
    }
    fn parse_paren_expr_seq(&mut self) -> PResult<'a, Vec<P<Expr>>> {
        self.parse_paren_comma_seq(|p| {
            match p.parse_expr() {
                Ok(expr) => Ok(expr),
                Err(mut err) => match p.token.kind {
                    token::Ident(name, false)
                    if name == kw::Underscore && p.look_ahead(1, |t| {
                        t == &token::Comma
                    }) => {
                        
                        err.emit();
                        let sp = p.token.span;
                        p.bump();
                        Ok(p.mk_expr(sp, ExprKind::Err, ThinVec::new()))
                    }
                    _ => Err(err),
                },
            }
        }).map(|(r, _)| r)
    }
    
    #[inline]
    pub(super) fn parse_expr_res(
        &mut self,
        r: Restrictions,
        already_parsed_attrs: Option<ThinVec<Attribute>>
    ) -> PResult<'a, P<Expr>> {
        self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
    }
    
    
    
    
    #[inline]
    fn parse_assoc_expr(
        &mut self,
        already_parsed_attrs: Option<ThinVec<Attribute>>,
    ) -> PResult<'a, P<Expr>> {
        self.parse_assoc_expr_with(0, already_parsed_attrs.into())
    }
    
    pub(super) fn parse_assoc_expr_with(
        &mut self,
        min_prec: usize,
        lhs: LhsExpr,
    ) -> PResult<'a, P<Expr>> {
        let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
            expr
        } else {
            let attrs = match lhs {
                LhsExpr::AttributesParsed(attrs) => Some(attrs),
                _ => None,
            };
            if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind) {
                return self.parse_prefix_range_expr(attrs);
            } else {
                self.parse_prefix_expr(attrs)?
            }
        };
        let last_type_ascription_set = self.last_type_ascription.is_some();
        match (self.expr_is_complete(&lhs), AssocOp::from_token(&self.token)) {
            (true, None) => {
                self.last_type_ascription = None;
                
                return Ok(lhs);
            }
            (false, _) => {} 
            
            
            
            (true, Some(AssocOp::Multiply)) | 
            (true, Some(AssocOp::Subtract)) | 
            (true, Some(AssocOp::LAnd)) | 
            (true, Some(AssocOp::Add)) 
            
            
            if !self.look_ahead(1, |t| t.is_reserved_ident()) => {
                self.last_type_ascription = None;
                
                let sp = self.sess.source_map().start_point(self.token.span);
                self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
                return Ok(lhs);
            }
            (true, Some(ref op)) if !op.can_continue_expr_unambiguously() => {
                self.last_type_ascription = None;
                return Ok(lhs);
            }
            (true, Some(_)) => {
                
                
                
                let mut err = self.struct_span_err(self.token.span, &format!(
                    "expected expression, found `{}`",
                    pprust::token_to_string(&self.token),
                ));
                err.span_label(self.token.span, "expected expression");
                self.sess.expr_parentheses_needed(
                    &mut err,
                    lhs.span,
                    Some(pprust::expr_to_string(&lhs),
                ));
                err.emit();
            }
        }
        self.expected_tokens.push(TokenType::Operator);
        while let Some(op) = AssocOp::from_token(&self.token) {
            
            
            
            
            let lhs_span = match (self.prev_token_kind, &lhs.node) {
                (PrevTokenKind::Interpolated, _) => self.prev_span,
                (PrevTokenKind::Ident, &ExprKind::Path(None, ref path))
                    if path.segments.len() == 1 => self.prev_span,
                _ => lhs.span,
            };
            let cur_op_span = self.token.span;
            let restrictions = if op.is_assign_like() {
                self.restrictions & Restrictions::NO_STRUCT_LITERAL
            } else {
                self.restrictions
            };
            let prec = op.precedence();
            if prec < min_prec {
                break;
            }
            
            if self.token == token::DotDotDot && op == AssocOp::DotDotEq {
                self.err_dotdotdot_syntax(self.token.span);
            }
            if self.token == token::LArrow {
                self.err_larrow_operator(self.token.span);
            }
            self.bump();
            if op.is_comparison() {
                self.check_no_chained_comparison(&lhs, &op);
            }
            
            if op == AssocOp::As {
                lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
                continue
            } else if op == AssocOp::Colon {
                let maybe_path = self.could_ascription_be_path(&lhs.node);
                self.last_type_ascription = Some((self.prev_span, maybe_path));
                lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type)?;
                continue
            } else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
                
                
                
                
                
                let rhs = if self.is_at_start_of_range_notation_rhs() {
                    Some(self.parse_assoc_expr_with(prec + 1, LhsExpr::NotYetParsed)?)
                } else {
                    None
                };
                let (lhs_span, rhs_span) = (lhs.span, if let Some(ref x) = rhs {
                    x.span
                } else {
                    cur_op_span
                });
                let limits = if op == AssocOp::DotDot {
                    RangeLimits::HalfOpen
                } else {
                    RangeLimits::Closed
                };
                let r = self.mk_range(Some(lhs), rhs, limits)?;
                lhs = self.mk_expr(lhs_span.to(rhs_span), r, ThinVec::new());
                break
            }
            let fixity = op.fixity();
            let prec_adjustment = match fixity {
                Fixity::Right => 0,
                Fixity::Left => 1,
                
                
                Fixity::None => 1,
            };
            let rhs = self.with_res(
                restrictions - Restrictions::STMT_EXPR,
                |this| this.parse_assoc_expr_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
            )?;
            
            
            let lhs_span = lhs
                .attrs
                .iter()
                .filter(|a| a.style == AttrStyle::Outer)
                .next()
                .map_or(lhs_span, |a| a.span);
            let span = lhs_span.to(rhs.span);
            lhs = match op {
                AssocOp::Add | AssocOp::Subtract | AssocOp::Multiply | AssocOp::Divide |
                AssocOp::Modulus | AssocOp::LAnd | AssocOp::LOr | AssocOp::BitXor |
                AssocOp::BitAnd | AssocOp::BitOr | AssocOp::ShiftLeft | AssocOp::ShiftRight |
                AssocOp::Equal | AssocOp::Less | AssocOp::LessEqual | AssocOp::NotEqual |
                AssocOp::Greater | AssocOp::GreaterEqual => {
                    let ast_op = op.to_ast_binop().unwrap();
                    let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
                    self.mk_expr(span, binary, ThinVec::new())
                }
                AssocOp::Assign => self.mk_expr(span, ExprKind::Assign(lhs, rhs), ThinVec::new()),
                AssocOp::AssignOp(k) => {
                    let aop = match k {
                        token::Plus =>    BinOpKind::Add,
                        token::Minus =>   BinOpKind::Sub,
                        token::Star =>    BinOpKind::Mul,
                        token::Slash =>   BinOpKind::Div,
                        token::Percent => BinOpKind::Rem,
                        token::Caret =>   BinOpKind::BitXor,
                        token::And =>     BinOpKind::BitAnd,
                        token::Or =>      BinOpKind::BitOr,
                        token::Shl =>     BinOpKind::Shl,
                        token::Shr =>     BinOpKind::Shr,
                    };
                    let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
                    self.mk_expr(span, aopexpr, ThinVec::new())
                }
                AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
                    self.bug("AssocOp should have been handled by special case")
                }
            };
            if let Fixity::None = fixity { break }
        }
        if last_type_ascription_set {
            self.last_type_ascription = None;
        }
        Ok(lhs)
    }
    
    fn expr_is_complete(&self, e: &Expr) -> bool {
        self.restrictions.contains(Restrictions::STMT_EXPR) &&
            !classify::expr_requires_semi_to_be_stmt(e)
    }
    fn is_at_start_of_range_notation_rhs(&self) -> bool {
        if self.token.can_begin_expr() {
            
            if self.token == token::OpenDelim(token::Brace) {
                return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
            }
            true
        } else {
            false
        }
    }
    
    fn parse_prefix_range_expr(
        &mut self,
        already_parsed_attrs: Option<ThinVec<Attribute>>
    ) -> PResult<'a, P<Expr>> {
        
        if self.token == token::DotDotDot {
            self.err_dotdotdot_syntax(self.token.span);
        }
        debug_assert!([token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind),
                      "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
                      self.token);
        let tok = self.token.clone();
        let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?;
        let lo = self.token.span;
        let mut hi = self.token.span;
        self.bump();
        let opt_end = if self.is_at_start_of_range_notation_rhs() {
            
            let next_prec = AssocOp::from_token(&tok).unwrap().precedence() + 1;
            Some(self.parse_assoc_expr_with(next_prec, LhsExpr::NotYetParsed)
                .map(|x| {
                    hi = x.span;
                    x
                })?)
        } else {
            None
        };
        let limits = if tok == token::DotDot {
            RangeLimits::HalfOpen
        } else {
            RangeLimits::Closed
        };
        let r = self.mk_range(None, opt_end, limits)?;
        Ok(self.mk_expr(lo.to(hi), r, attrs))
    }
    
    fn parse_prefix_expr(
        &mut self,
        already_parsed_attrs: Option<ThinVec<Attribute>>
    ) -> PResult<'a, P<Expr>> {
        let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?;
        let lo = self.token.span;
        
        let (hi, ex) = match self.token.kind {
            token::Not => {
                self.bump();
                let e = self.parse_prefix_expr(None);
                let (span, e) = self.interpolated_or_expr_span(e)?;
                (lo.to(span), self.mk_unary(UnOp::Not, e))
            }
            
            token::Tilde => {
                self.bump();
                let e = self.parse_prefix_expr(None);
                let (span, e) = self.interpolated_or_expr_span(e)?;
                let span_of_tilde = lo;
                self.struct_span_err(span_of_tilde, "`~` cannot be used as a unary operator")
                    .span_suggestion_short(
                        span_of_tilde,
                        "use `!` to perform bitwise negation",
                        "!".to_owned(),
                        Applicability::MachineApplicable
                    )
                    .emit();
                (lo.to(span), self.mk_unary(UnOp::Not, e))
            }
            token::BinOp(token::Minus) => {
                self.bump();
                let e = self.parse_prefix_expr(None);
                let (span, e) = self.interpolated_or_expr_span(e)?;
                (lo.to(span), self.mk_unary(UnOp::Neg, e))
            }
            token::BinOp(token::Star) => {
                self.bump();
                let e = self.parse_prefix_expr(None);
                let (span, e) = self.interpolated_or_expr_span(e)?;
                (lo.to(span), self.mk_unary(UnOp::Deref, e))
            }
            token::BinOp(token::And) | token::AndAnd => {
                self.expect_and()?;
                let m = self.parse_mutability();
                let e = self.parse_prefix_expr(None);
                let (span, e) = self.interpolated_or_expr_span(e)?;
                (lo.to(span), ExprKind::AddrOf(m, e))
            }
            token::Ident(..) if self.token.is_keyword(kw::Box) => {
                self.bump();
                let e = self.parse_prefix_expr(None);
                let (span, e) = self.interpolated_or_expr_span(e)?;
                (lo.to(span), ExprKind::Box(e))
            }
            token::Ident(..) if self.token.is_ident_named(sym::not) => {
                
                
                
                let token_cannot_continue_expr = |t: &Token| match t.kind {
                    
                    
                    token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
                    token::Literal(..) | token::Pound => true,
                    _ => t.is_whole_expr(),
                };
                let cannot_continue_expr = self.look_ahead(1, token_cannot_continue_expr);
                if cannot_continue_expr {
                    self.bump();
                    
                    self.struct_span_err(
                        self.token.span,
                        &format!("unexpected {} after identifier",self.this_token_descr())
                    )
                    .span_suggestion_short(
                        
                        
                        self.sess.source_map()
                            .span_until_non_whitespace(lo.to(self.token.span)),
                        "use `!` to perform logical negation",
                        "!".to_owned(),
                        Applicability::MachineApplicable
                    )
                    .emit();
                    
                    
                    let e = self.parse_prefix_expr(None);
                    let (span, e) = self.interpolated_or_expr_span(e)?;
                    (lo.to(span), self.mk_unary(UnOp::Not, e))
                } else {
                    return self.parse_dot_or_call_expr(Some(attrs));
                }
            }
            _ => { return self.parse_dot_or_call_expr(Some(attrs)); }
        };
        return Ok(self.mk_expr(lo.to(hi), ex, attrs));
    }
    
    fn interpolated_or_expr_span(
        &self,
        expr: PResult<'a, P<Expr>>,
    ) -> PResult<'a, (Span, P<Expr>)> {
        expr.map(|e| {
            if self.prev_token_kind == PrevTokenKind::Interpolated {
                (self.prev_span, e)
            } else {
                (e.span, e)
            }
        })
    }
    fn parse_assoc_op_cast(&mut self, lhs: P<Expr>, lhs_span: Span,
                           expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind)
                           -> PResult<'a, P<Expr>> {
        let mk_expr = |this: &mut Self, rhs: P<Ty>| {
            this.mk_expr(lhs_span.to(rhs.span), expr_kind(lhs, rhs), ThinVec::new())
        };
        
        
        let parser_snapshot_before_type = self.clone();
        match self.parse_ty_no_plus() {
            Ok(rhs) => {
                Ok(mk_expr(self, rhs))
            }
            Err(mut type_err) => {
                
                
                
                let parser_snapshot_after_type = self.clone();
                mem::replace(self, parser_snapshot_before_type);
                match self.parse_path(PathStyle::Expr) {
                    Ok(path) => {
                        let (op_noun, op_verb) = match self.token.kind {
                            token::Lt => ("comparison", "comparing"),
                            token::BinOp(token::Shl) => ("shift", "shifting"),
                            _ => {
                                
                                
                                
                                
                                mem::replace(self, parser_snapshot_after_type);
                                return Err(type_err);
                            }
                        };
                        
                        type_err.cancel();
                        
                        
                        let msg = format!("`<` is interpreted as a start of generic \
                                           arguments for `{}`, not a {}", path, op_noun);
                        let span_after_type = parser_snapshot_after_type.token.span;
                        let expr = mk_expr(self, P(Ty {
                            span: path.span,
                            node: TyKind::Path(None, path),
                            id: ast::DUMMY_NODE_ID
                        }));
                        let expr_str = self.span_to_snippet(expr.span)
                            .unwrap_or_else(|_| pprust::expr_to_string(&expr));
                        self.struct_span_err(self.token.span, &msg)
                            .span_label(
                                self.look_ahead(1, |t| t.span).to(span_after_type),
                                "interpreted as generic arguments"
                            )
                            .span_label(self.token.span, format!("not interpreted as {}", op_noun))
                            .span_suggestion(
                                expr.span,
                                &format!("try {} the cast value", op_verb),
                                format!("({})", expr_str),
                                Applicability::MachineApplicable
                            )
                            .emit();
                        Ok(expr)
                    }
                    Err(mut path_err) => {
                        
                        path_err.cancel();
                        mem::replace(self, parser_snapshot_after_type);
                        Err(type_err)
                    }
                }
            }
        }
    }
    
    fn parse_dot_or_call_expr(
        &mut self,
        already_parsed_attrs: Option<ThinVec<Attribute>>,
    ) -> PResult<'a, P<Expr>> {
        let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?;
        let b = self.parse_bottom_expr();
        let (span, b) = self.interpolated_or_expr_span(b)?;
        self.parse_dot_or_call_expr_with(b, span, attrs)
    }
    pub(super) fn parse_dot_or_call_expr_with(
        &mut self,
        e0: P<Expr>,
        lo: Span,
        mut attrs: ThinVec<Attribute>,
    ) -> PResult<'a, P<Expr>> {
        
        
        
        self.parse_dot_or_call_expr_with_(e0, lo).map(|expr|
            expr.map(|mut expr| {
                attrs.extend::<Vec<_>>(expr.attrs.into());
                expr.attrs = attrs;
                match expr.node {
                    ExprKind::If(..) if !expr.attrs.is_empty() => {
                        
                        let span = expr.attrs[0].span;
                        self.span_err(span, "attributes are not yet allowed on `if` expressions");
                    }
                    _ => {}
                }
                expr
            })
        )
    }
    fn parse_dot_or_call_expr_with_(&mut self, e0: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
        let mut e = e0;
        let mut hi;
        loop {
            
            while self.eat(&token::Question) {
                let hi = self.prev_span;
                e = self.mk_expr(lo.to(hi), ExprKind::Try(e), ThinVec::new());
            }
            
            if self.eat(&token::Dot) {
                match self.token.kind {
                    token::Ident(..) => {
                        e = self.parse_dot_suffix(e, lo)?;
                    }
                    token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
                        let span = self.token.span;
                        self.bump();
                        let field = ExprKind::Field(e, Ident::new(symbol, span));
                        e = self.mk_expr(lo.to(span), field, ThinVec::new());
                        self.expect_no_suffix(span, "a tuple index", suffix);
                    }
                    token::Literal(token::Lit { kind: token::Float, symbol, .. }) => {
                      self.bump();
                      let fstr = symbol.as_str();
                      let msg = format!("unexpected token: `{}`", symbol);
                      let mut err = self.diagnostic().struct_span_err(self.prev_span, &msg);
                      err.span_label(self.prev_span, "unexpected token");
                      if fstr.chars().all(|x| "0123456789.".contains(x)) {
                          let float = match fstr.parse::<f64>().ok() {
                              Some(f) => f,
                              None => continue,
                          };
                          let sugg = pprust::to_string(|s| {
                              s.popen();
                              s.print_expr(&e);
                              s.s.word( ".");
                              s.print_usize(float.trunc() as usize);
                              s.pclose();
                              s.s.word(".");
                              s.s.word(fstr.splitn(2, ".").last().unwrap().to_string())
                          });
                          err.span_suggestion(
                              lo.to(self.prev_span),
                              "try parenthesizing the first index",
                              sugg,
                              Applicability::MachineApplicable
                          );
                      }
                      return Err(err);
                    }
                    _ => {
                        
                        let actual = self.this_token_to_string();
                        self.span_err(self.token.span, &format!("unexpected token: `{}`", actual));
                    }
                }
                continue;
            }
            if self.expr_is_complete(&e) { break; }
            match self.token.kind {
                
                token::OpenDelim(token::Paren) => {
                    let seq = self.parse_paren_expr_seq().map(|es| {
                        let nd = self.mk_call(e, es);
                        let hi = self.prev_span;
                        self.mk_expr(lo.to(hi), nd, ThinVec::new())
                    });
                    e = self.recover_seq_parse_error(token::Paren, lo, seq);
                }
                
                
                token::OpenDelim(token::Bracket) => {
                    self.bump();
                    let ix = self.parse_expr()?;
                    hi = self.token.span;
                    self.expect(&token::CloseDelim(token::Bracket))?;
                    let index = self.mk_index(e, ix);
                    e = self.mk_expr(lo.to(hi), index, ThinVec::new())
                }
                _ => return Ok(e)
            }
        }
        return Ok(e);
    }
    
    fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
        if self.token.span.rust_2018() && self.eat_keyword(kw::Await) {
            return self.mk_await_expr(self_arg, lo);
        }
        let segment = self.parse_path_segment(PathStyle::Expr)?;
        self.check_trailing_angle_brackets(&segment, token::OpenDelim(token::Paren));
        Ok(match self.token.kind {
            token::OpenDelim(token::Paren) => {
                
                let mut args = self.parse_paren_expr_seq()?;
                args.insert(0, self_arg);
                let span = lo.to(self.prev_span);
                self.mk_expr(span, ExprKind::MethodCall(segment, args), ThinVec::new())
            }
            _ => {
                
                if let Some(args) = segment.args {
                    self.span_err(args.span(),
                                  "field expressions may not have generic arguments");
                }
                let span = lo.to(self.prev_span);
                self.mk_expr(span, ExprKind::Field(self_arg, segment.ident), ThinVec::new())
            }
        })
    }
    
    
    
    
    
    fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
        maybe_recover_from_interpolated_ty_qpath!(self, true);
        maybe_whole_expr!(self);
        
        
        
        
        
        let mut attrs = ThinVec::new();
        let lo = self.token.span;
        let mut hi = self.token.span;
        let ex: ExprKind;
        macro_rules! parse_lit {
            () => {
                match self.parse_lit() {
                    Ok(literal) => {
                        hi = self.prev_span;
                        ex = ExprKind::Lit(literal);
                    }
                    Err(mut err) => {
                        self.cancel(&mut err);
                        return Err(self.expected_expression_found());
                    }
                }
            }
        }
        
        match self.token.kind {
            
            
            
            token::Literal(_) => {
                parse_lit!()
            }
            token::OpenDelim(token::Paren) => {
                self.bump();
                attrs.extend(self.parse_inner_attributes()?);
                
                
                let mut es = vec![];
                let mut trailing_comma = false;
                let mut recovered = false;
                while self.token != token::CloseDelim(token::Paren) {
                    es.push(match self.parse_expr() {
                        Ok(es) => es,
                        Err(mut err) => {
                            
                            match self.token.kind {
                                token::Ident(name, false)
                                if name == kw::Underscore && self.look_ahead(1, |t| {
                                    t == &token::Comma
                                }) => {
                                    
                                    err.emit();
                                    let sp = self.token.span;
                                    self.bump();
                                    self.mk_expr(sp, ExprKind::Err, ThinVec::new())
                                }
                                _ => return Ok(
                                    self.recover_seq_parse_error(token::Paren, lo, Err(err)),
                                ),
                            }
                        }
                    });
                    recovered = self.expect_one_of(
                        &[],
                        &[token::Comma, token::CloseDelim(token::Paren)],
                    )?;
                    if self.eat(&token::Comma) {
                        trailing_comma = true;
                    } else {
                        trailing_comma = false;
                        break;
                    }
                }
                if !recovered {
                    self.bump();
                }
                hi = self.prev_span;
                ex = if es.len() == 1 && !trailing_comma {
                    ExprKind::Paren(es.into_iter().nth(0).unwrap())
                } else {
                    ExprKind::Tup(es)
                };
            }
            token::OpenDelim(token::Brace) => {
                return self.parse_block_expr(None, lo, BlockCheckMode::Default, attrs);
            }
            token::BinOp(token::Or) | token::OrOr => {
                return self.parse_lambda_expr(attrs);
            }
            token::OpenDelim(token::Bracket) => {
                self.bump();
                attrs.extend(self.parse_inner_attributes()?);
                if self.eat(&token::CloseDelim(token::Bracket)) {
                    
                    ex = ExprKind::Array(Vec::new());
                } else {
                    
                    let first_expr = self.parse_expr()?;
                    if self.eat(&token::Semi) {
                        
                        let count = AnonConst {
                            id: ast::DUMMY_NODE_ID,
                            value: self.parse_expr()?,
                        };
                        self.expect(&token::CloseDelim(token::Bracket))?;
                        ex = ExprKind::Repeat(first_expr, count);
                    } else if self.eat(&token::Comma) {
                        
                        let remaining_exprs = self.parse_seq_to_end(
                            &token::CloseDelim(token::Bracket),
                            SeqSep::trailing_allowed(token::Comma),
                            |p| Ok(p.parse_expr()?)
                        )?;
                        let mut exprs = vec![first_expr];
                        exprs.extend(remaining_exprs);
                        ex = ExprKind::Array(exprs);
                    } else {
                        
                        self.expect(&token::CloseDelim(token::Bracket))?;
                        ex = ExprKind::Array(vec![first_expr]);
                    }
                }
                hi = self.prev_span;
            }
            _ => {
                if self.eat_lt() {
                    let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
                    hi = path.span;
                    return Ok(self.mk_expr(lo.to(hi), ExprKind::Path(Some(qself), path), attrs));
                }
                if self.check_keyword(kw::Move) || self.check_keyword(kw::Static) {
                    return self.parse_lambda_expr(attrs);
                }
                if self.eat_keyword(kw::If) {
                    return self.parse_if_expr(attrs);
                }
                if self.eat_keyword(kw::For) {
                    let lo = self.prev_span;
                    return self.parse_for_expr(None, lo, attrs);
                }
                if self.eat_keyword(kw::While) {
                    let lo = self.prev_span;
                    return self.parse_while_expr(None, lo, attrs);
                }
                if let Some(label) = self.eat_label() {
                    let lo = label.ident.span;
                    self.expect(&token::Colon)?;
                    if self.eat_keyword(kw::While) {
                        return self.parse_while_expr(Some(label), lo, attrs)
                    }
                    if self.eat_keyword(kw::For) {
                        return self.parse_for_expr(Some(label), lo, attrs)
                    }
                    if self.eat_keyword(kw::Loop) {
                        return self.parse_loop_expr(Some(label), lo, attrs)
                    }
                    if self.token == token::OpenDelim(token::Brace) {
                        return self.parse_block_expr(Some(label),
                                                     lo,
                                                     BlockCheckMode::Default,
                                                     attrs);
                    }
                    let msg = "expected `while`, `for`, `loop` or `{` after a label";
                    let mut err = self.fatal(msg);
                    err.span_label(self.token.span, msg);
                    return Err(err);
                }
                if self.eat_keyword(kw::Loop) {
                    let lo = self.prev_span;
                    return self.parse_loop_expr(None, lo, attrs);
                }
                if self.eat_keyword(kw::Continue) {
                    let label = self.eat_label();
                    let ex = ExprKind::Continue(label);
                    let hi = self.prev_span;
                    return Ok(self.mk_expr(lo.to(hi), ex, attrs));
                }
                if self.eat_keyword(kw::Match) {
                    let match_sp = self.prev_span;
                    return self.parse_match_expr(attrs).map_err(|mut err| {
                        err.span_label(match_sp, "while parsing this match expression");
                        err
                    });
                }
                if self.eat_keyword(kw::Unsafe) {
                    return self.parse_block_expr(
                        None,
                        lo,
                        BlockCheckMode::Unsafe(ast::UserProvided),
                        attrs);
                }
                if self.is_do_catch_block() {
                    let mut db = self.fatal("found removed `do catch` syntax");
                    db.help("Following RFC #2388, the new non-placeholder syntax is `try`");
                    return Err(db);
                }
                if self.is_try_block() {
                    let lo = self.token.span;
                    assert!(self.eat_keyword(kw::Try));
                    return self.parse_try_block(lo, attrs);
                }
                
                let is_span_rust_2018 = self.token.span.rust_2018();
                if is_span_rust_2018 && self.check_keyword(kw::Async) {
                    return if self.is_async_block() { 
                        self.parse_async_block(attrs)
                    } else {
                        self.parse_lambda_expr(attrs)
                    };
                }
                if self.eat_keyword(kw::Return) {
                    if self.token.can_begin_expr() {
                        let e = self.parse_expr()?;
                        hi = e.span;
                        ex = ExprKind::Ret(Some(e));
                    } else {
                        ex = ExprKind::Ret(None);
                    }
                } else if self.eat_keyword(kw::Break) {
                    let label = self.eat_label();
                    let e = if self.token.can_begin_expr()
                               && !(self.token == token::OpenDelim(token::Brace)
                                    && self.restrictions.contains(
                                           Restrictions::NO_STRUCT_LITERAL)) {
                        Some(self.parse_expr()?)
                    } else {
                        None
                    };
                    ex = ExprKind::Break(label, e);
                    hi = self.prev_span;
                } else if self.eat_keyword(kw::Yield) {
                    if self.token.can_begin_expr() {
                        let e = self.parse_expr()?;
                        hi = e.span;
                        ex = ExprKind::Yield(Some(e));
                    } else {
                        ex = ExprKind::Yield(None);
                    }
                    let span = lo.to(hi);
                    self.sess.yield_spans.borrow_mut().push(span);
                } else if self.eat_keyword(kw::Let) {
                    return self.parse_let_expr(attrs);
                } else if is_span_rust_2018 && self.eat_keyword(kw::Await) {
                    let (await_hi, e_kind) = self.parse_incorrect_await_syntax(lo, self.prev_span)?;
                    hi = await_hi;
                    ex = e_kind;
                } else if self.token.is_path_start() {
                    let path = self.parse_path(PathStyle::Expr)?;
                    
                    if self.eat(&token::Not) {
                        
                        let (delim, tts) = self.expect_delimited_token_tree()?;
                        hi = self.prev_span;
                        ex = ExprKind::Mac(Mac {
                            path,
                            tts,
                            delim,
                            span: lo.to(hi),
                            prior_type_ascription: self.last_type_ascription,
                        });
                    } else if self.check(&token::OpenDelim(token::Brace)) {
                        if let Some(expr) = self.maybe_parse_struct_expr(lo, &path, &attrs) {
                            return expr;
                        } else {
                            hi = path.span;
                            ex = ExprKind::Path(None, path);
                        }
                    } else {
                        hi = path.span;
                        ex = ExprKind::Path(None, path);
                    }
                } else {
                    if !self.unclosed_delims.is_empty() && self.check(&token::Semi) {
                        
                        
                        
                        
                        
                        
                        
                        
                        
                        
                        
                        self.bump();
                        return Ok(self.mk_expr(self.token.span, ExprKind::Err, ThinVec::new()));
                    }
                    parse_lit!()
                }
            }
        }
        let expr = self.mk_expr(lo.to(hi), ex, attrs);
        self.maybe_recover_from_bad_qpath(expr, true)
    }
    
    crate fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
        maybe_whole_expr!(self);
        let minus_lo = self.token.span;
        let minus_present = self.eat(&token::BinOp(token::Minus));
        let lo = self.token.span;
        let literal = self.parse_lit()?;
        let hi = self.prev_span;
        let expr = self.mk_expr(lo.to(hi), ExprKind::Lit(literal), ThinVec::new());
        if minus_present {
            let minus_hi = self.prev_span;
            let unary = self.mk_unary(UnOp::Neg, expr);
            Ok(self.mk_expr(minus_lo.to(minus_hi), unary, ThinVec::new()))
        } else {
            Ok(expr)
        }
    }
    
    crate fn parse_block_expr(
        &mut self,
        opt_label: Option<Label>,
        lo: Span,
        blk_mode: BlockCheckMode,
        outer_attrs: ThinVec<Attribute>,
    ) -> PResult<'a, P<Expr>> {
        self.expect(&token::OpenDelim(token::Brace))?;
        let mut attrs = outer_attrs;
        attrs.extend(self.parse_inner_attributes()?);
        let blk = self.parse_block_tail(lo, blk_mode)?;
        return Ok(self.mk_expr(blk.span, ExprKind::Block(blk, opt_label), attrs));
    }
    
    fn parse_lambda_expr(&mut self, attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
        let lo = self.token.span;
        let movability = if self.eat_keyword(kw::Static) {
            Movability::Static
        } else {
            Movability::Movable
        };
        let asyncness = if self.token.span.rust_2018() {
            self.parse_asyncness()
        } else {
            IsAsync::NotAsync
        };
        if asyncness.is_async() {
            
            self.sess.async_closure_spans.borrow_mut().push(self.prev_span);
        }
        let capture_clause = self.parse_capture_clause();
        let decl = self.parse_fn_block_decl()?;
        let decl_hi = self.prev_span;
        let body = match decl.output {
            FunctionRetTy::Default(_) => {
                let restrictions = self.restrictions - Restrictions::STMT_EXPR;
                self.parse_expr_res(restrictions, None)?
            },
            _ => {
                
                
                let body_lo = self.token.span;
                self.parse_block_expr(None, body_lo, BlockCheckMode::Default, ThinVec::new())?
            }
        };
        Ok(self.mk_expr(
            lo.to(body.span),
            ExprKind::Closure(capture_clause, asyncness, movability, decl, body, lo.to(decl_hi)),
            attrs))
    }
    
    fn parse_capture_clause(&mut self) -> CaptureBy {
        if self.eat_keyword(kw::Move) {
            CaptureBy::Value
        } else {
            CaptureBy::Ref
        }
    }
    
    fn parse_fn_block_decl(&mut self) -> PResult<'a, P<FnDecl>> {
        let inputs_captures = {
            if self.eat(&token::OrOr) {
                Vec::new()
            } else {
                self.expect(&token::BinOp(token::Or))?;
                let args = self.parse_seq_to_before_tokens(
                    &[&token::BinOp(token::Or), &token::OrOr],
                    SeqSep::trailing_allowed(token::Comma),
                    TokenExpectType::NoExpect,
                    |p| p.parse_fn_block_arg()
                )?.0;
                self.expect_or()?;
                args
            }
        };
        let output = self.parse_ret_ty(true)?;
        Ok(P(FnDecl {
            inputs: inputs_captures,
            output,
            c_variadic: false
        }))
    }
    
    fn parse_fn_block_arg(&mut self) -> PResult<'a, Arg> {
        let lo = self.token.span;
        let attrs = self.parse_arg_attributes()?;
        let pat = self.parse_pat(Some("argument name"))?;
        let t = if self.eat(&token::Colon) {
            self.parse_ty()?
        } else {
            P(Ty {
                id: ast::DUMMY_NODE_ID,
                node: TyKind::Infer,
                span: self.prev_span,
            })
        };
        let span = lo.to(self.token.span);
        Ok(Arg {
            attrs: attrs.into(),
            ty: t,
            pat,
            span,
            id: ast::DUMMY_NODE_ID
        })
    }
    
    fn parse_if_expr(&mut self, attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
        let lo = self.prev_span;
        let cond = self.parse_cond_expr()?;
        
        
        
        
        if self.eat_keyword(kw::Else) || !cond.returns() {
            let sp = self.sess.source_map().next_point(lo);
            let mut err = self.diagnostic()
                .struct_span_err(sp, "missing condition for `if` expression");
            err.span_label(sp, "expected if condition here");
            return Err(err)
        }
        let not_block = self.token != token::OpenDelim(token::Brace);
        let thn = self.parse_block().map_err(|mut err| {
            if not_block {
                err.span_label(lo, "this `if` statement has a condition, but no block");
            }
            err
        })?;
        let mut els: Option<P<Expr>> = None;
        let mut hi = thn.span;
        if self.eat_keyword(kw::Else) {
            let elexpr = self.parse_else_expr()?;
            hi = elexpr.span;
            els = Some(elexpr);
        }
        Ok(self.mk_expr(lo.to(hi), ExprKind::If(cond, thn, els), attrs))
    }
    
    fn parse_cond_expr(&mut self) -> PResult<'a, P<Expr>> {
        let cond = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
        if let ExprKind::Let(..) = cond.node {
            
            let last = self.sess.let_chains_spans.borrow_mut().pop();
            debug_assert_eq!(cond.span, last.unwrap());
        }
        Ok(cond)
    }
    
    
    fn parse_let_expr(&mut self, attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
        let lo = self.prev_span;
        let pats = self.parse_pats()?;
        self.expect(&token::Eq)?;
        let expr = self.with_res(
            Restrictions::NO_STRUCT_LITERAL,
            |this| this.parse_assoc_expr_with(1 + prec_let_scrutinee_needs_par(), None.into())
        )?;
        let span = lo.to(expr.span);
        self.sess.let_chains_spans.borrow_mut().push(span);
        Ok(self.mk_expr(span, ExprKind::Let(pats, expr), attrs))
    }
    
    fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
        if self.eat_keyword(kw::If) {
            return self.parse_if_expr(ThinVec::new());
        } else {
            let blk = self.parse_block()?;
            return Ok(self.mk_expr(blk.span, ExprKind::Block(blk, None), ThinVec::new()));
        }
    }
    
    fn parse_for_expr(
        &mut self,
        opt_label: Option<Label>,
        span_lo: Span,
        mut attrs: ThinVec<Attribute>
    ) -> PResult<'a, P<Expr>> {
        
        
        
        
        let begin_paren = match self.token.kind {
            token::OpenDelim(token::Paren) => Some(self.token.span),
            _ => None,
        };
        let pat = self.parse_top_level_pat()?;
        if !self.eat_keyword(kw::In) {
            let in_span = self.prev_span.between(self.token.span);
            self.struct_span_err(in_span, "missing `in` in `for` loop")
                .span_suggestion_short(
                    in_span,
                    "try adding `in` here", " in ".into(),
                    
                    Applicability::MaybeIncorrect
                )
                .emit();
        }
        let in_span = self.prev_span;
        self.check_for_for_in_in_typo(in_span);
        let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
        let pat = self.recover_parens_around_for_head(pat, &expr, begin_paren);
        let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?;
        attrs.extend(iattrs);
        let hi = self.prev_span;
        Ok(self.mk_expr(span_lo.to(hi), ExprKind::ForLoop(pat, expr, loop_block, opt_label), attrs))
    }
    
    fn parse_while_expr(
        &mut self,
        opt_label: Option<Label>,
        span_lo: Span,
        mut attrs: ThinVec<Attribute>
    ) -> PResult<'a, P<Expr>> {
        let cond = self.parse_cond_expr()?;
        let (iattrs, body) = self.parse_inner_attrs_and_block()?;
        attrs.extend(iattrs);
        let span = span_lo.to(body.span);
        Ok(self.mk_expr(span, ExprKind::While(cond, body, opt_label), attrs))
    }
    
    fn parse_loop_expr(
        &mut self,
        opt_label: Option<Label>,
        span_lo: Span,
        mut attrs: ThinVec<Attribute>
    ) -> PResult<'a, P<Expr>> {
        let (iattrs, body) = self.parse_inner_attrs_and_block()?;
        attrs.extend(iattrs);
        let span = span_lo.to(body.span);
        Ok(self.mk_expr(span, ExprKind::Loop(body, opt_label), attrs))
    }
    fn eat_label(&mut self) -> Option<Label> {
        if let Some(ident) = self.token.lifetime() {
            let span = self.token.span;
            self.bump();
            Some(Label { ident: Ident::new(ident.name, span) })
        } else {
            None
        }
    }
    
    fn parse_match_expr(&mut self, mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
        let match_span = self.prev_span;
        let lo = self.prev_span;
        let discriminant = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
        if let Err(mut e) = self.expect(&token::OpenDelim(token::Brace)) {
            if self.token == token::Semi {
                e.span_suggestion_short(
                    match_span,
                    "try removing this `match`",
                    String::new(),
                    Applicability::MaybeIncorrect 
                );
            }
            return Err(e)
        }
        attrs.extend(self.parse_inner_attributes()?);
        let mut arms: Vec<Arm> = Vec::new();
        while self.token != token::CloseDelim(token::Brace) {
            match self.parse_arm() {
                Ok(arm) => arms.push(arm),
                Err(mut e) => {
                    
                    e.emit();
                    self.recover_stmt();
                    let span = lo.to(self.token.span);
                    if self.token == token::CloseDelim(token::Brace) {
                        self.bump();
                    }
                    return Ok(self.mk_expr(span, ExprKind::Match(discriminant, arms), attrs));
                }
            }
        }
        let hi = self.token.span;
        self.bump();
        return Ok(self.mk_expr(lo.to(hi), ExprKind::Match(discriminant, arms), attrs));
    }
    crate fn parse_arm(&mut self) -> PResult<'a, Arm> {
        let attrs = self.parse_outer_attributes()?;
        let lo = self.token.span;
        let pats = self.parse_pats()?;
        let guard = if self.eat_keyword(kw::If) {
            Some(self.parse_expr()?)
        } else {
            None
        };
        let arrow_span = self.token.span;
        self.expect(&token::FatArrow)?;
        let arm_start_span = self.token.span;
        let expr = self.parse_expr_res(Restrictions::STMT_EXPR, None)
            .map_err(|mut err| {
                err.span_label(arrow_span, "while parsing the `match` arm starting here");
                err
            })?;
        let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
            && self.token != token::CloseDelim(token::Brace);
        let hi = self.token.span;
        if require_comma {
            let cm = self.sess.source_map();
            self.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)])
                .map_err(|mut err| {
                    match (cm.span_to_lines(expr.span), cm.span_to_lines(arm_start_span)) {
                        (Ok(ref expr_lines), Ok(ref arm_start_lines))
                        if arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col
                            && expr_lines.lines.len() == 2
                            && self.token == token::FatArrow => {
                            
                            
                            
                            
                            
                            
                            
                            
                            
                            
                            
                            err.span_suggestion_short(
                                cm.next_point(arm_start_span),
                                "missing a comma here to end this `match` arm",
                                ",".to_owned(),
                                Applicability::MachineApplicable
                            );
                        }
                        _ => {
                            err.span_label(arrow_span,
                                           "while parsing the `match` arm starting here");
                        }
                    }
                    err
                })?;
        } else {
            self.eat(&token::Comma);
        }
        Ok(ast::Arm {
            attrs,
            pats,
            guard,
            body: expr,
            span: lo.to(hi),
            id: ast::DUMMY_NODE_ID,
        })
    }
    
    fn parse_try_block(
        &mut self,
        span_lo: Span,
        mut attrs: ThinVec<Attribute>
    ) -> PResult<'a, P<Expr>> {
        let (iattrs, body) = self.parse_inner_attrs_and_block()?;
        attrs.extend(iattrs);
        if self.eat_keyword(kw::Catch) {
            let mut error = self.struct_span_err(self.prev_span,
                                                 "keyword `catch` cannot follow a `try` block");
            error.help("try using `match` on the result of the `try` block instead");
            error.emit();
            Err(error)
        } else {
            Ok(self.mk_expr(span_lo.to(body.span), ExprKind::TryBlock(body), attrs))
        }
    }
    fn is_do_catch_block(&self) -> bool {
        self.token.is_keyword(kw::Do) &&
        self.is_keyword_ahead(1, &[kw::Catch]) &&
        self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace)) &&
        !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
    }
    fn is_try_block(&self) -> bool {
        self.token.is_keyword(kw::Try) &&
        self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace)) &&
        self.token.span.rust_2018() &&
        
        !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
    }
    
    pub fn parse_async_block(&mut self, mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> {
        let span_lo = self.token.span;
        self.expect_keyword(kw::Async)?;
        let capture_clause = self.parse_capture_clause();
        let (iattrs, body) = self.parse_inner_attrs_and_block()?;
        attrs.extend(iattrs);
        Ok(self.mk_expr(
            span_lo.to(body.span),
            ExprKind::Async(capture_clause, ast::DUMMY_NODE_ID, body), attrs))
    }
    fn is_async_block(&self) -> bool {
        self.token.is_keyword(kw::Async) &&
        (
            ( 
                self.is_keyword_ahead(1, &[kw::Move]) &&
                self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
            ) || ( 
                self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
            )
        )
    }
    fn maybe_parse_struct_expr(
        &mut self,
        lo: Span,
        path: &ast::Path,
        attrs: &ThinVec<Attribute>,
    ) -> Option<PResult<'a, P<Expr>>> {
        let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
        let certainly_not_a_block = || self.look_ahead(1, |t| t.is_ident()) && (
            
            self.look_ahead(2, |t| t == &token::Comma) ||
            self.look_ahead(2, |t| t == &token::Colon) && (
                
                self.look_ahead(4, |t| t == &token::Comma) ||
                
                self.look_ahead(3, |t| !t.can_begin_type())
            )
        );
        if struct_allowed || certainly_not_a_block() {
            
            let expr = self.parse_struct_expr(lo, path.clone(), attrs.clone());
            if let (Ok(expr), false) = (&expr, struct_allowed) {
                self.struct_span_err(
                    expr.span,
                    "struct literals are not allowed here",
                )
                .multipart_suggestion(
                    "surround the struct literal with parentheses",
                    vec![
                        (lo.shrink_to_lo(), "(".to_string()),
                        (expr.span.shrink_to_hi(), ")".to_string()),
                    ],
                    Applicability::MachineApplicable,
                )
                .emit();
            }
            return Some(expr);
        }
        None
    }
    pub(super) fn parse_struct_expr(
        &mut self,
        lo: Span,
        pth: ast::Path,
        mut attrs: ThinVec<Attribute>
    ) -> PResult<'a, P<Expr>> {
        let struct_sp = lo.to(self.prev_span);
        self.bump();
        let mut fields = Vec::new();
        let mut base = None;
        attrs.extend(self.parse_inner_attributes()?);
        while self.token != token::CloseDelim(token::Brace) {
            if self.eat(&token::DotDot) {
                let exp_span = self.prev_span;
                match self.parse_expr() {
                    Ok(e) => {
                        base = Some(e);
                    }
                    Err(mut e) => {
                        e.emit();
                        self.recover_stmt();
                    }
                }
                if self.token == token::Comma {
                    self.struct_span_err(
                        exp_span.to(self.prev_span),
                        "cannot use a comma after the base struct",
                    )
                    .span_suggestion_short(
                        self.token.span,
                        "remove this comma",
                        String::new(),
                        Applicability::MachineApplicable
                    )
                    .note("the base struct must always be the last field")
                    .emit();
                    self.recover_stmt();
                }
                break;
            }
            let mut recovery_field = None;
            if let token::Ident(name, _) = self.token.kind {
                if !self.token.is_reserved_ident() && self.look_ahead(1, |t| *t == token::Colon) {
                    
                    recovery_field = Some(ast::Field {
                        ident: Ident::new(name, self.token.span),
                        span: self.token.span,
                        expr: self.mk_expr(self.token.span, ExprKind::Err, ThinVec::new()),
                        is_shorthand: false,
                        attrs: ThinVec::new(),
                        id: ast::DUMMY_NODE_ID,
                    });
                }
            }
            let mut parsed_field = None;
            match self.parse_field() {
                Ok(f) => parsed_field = Some(f),
                Err(mut e) => {
                    e.span_label(struct_sp, "while parsing this struct");
                    e.emit();
                    
                    
                    
                    if self.token != token::Comma {
                        self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
                        if self.token != token::Comma {
                            break;
                        }
                    }
                }
            }
            match self.expect_one_of(&[token::Comma],
                                     &[token::CloseDelim(token::Brace)]) {
                Ok(_) => if let Some(f) = parsed_field.or(recovery_field) {
                    
                    fields.push(f);
                }
                Err(mut e) => {
                    if let Some(f) = recovery_field {
                        fields.push(f);
                    }
                    e.span_label(struct_sp, "while parsing this struct");
                    e.emit();
                    self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
                    self.eat(&token::Comma);
                }
            }
        }
        let span = lo.to(self.token.span);
        self.expect(&token::CloseDelim(token::Brace))?;
        return Ok(self.mk_expr(span, ExprKind::Struct(pth, fields, base), attrs));
    }
    
    fn parse_field(&mut self) -> PResult<'a, Field> {
        let attrs = self.parse_outer_attributes()?;
        let lo = self.token.span;
        
        let (fieldname, expr, is_shorthand) = if self.look_ahead(1, |t| {
            t == &token::Colon || t == &token::Eq
        }) {
            let fieldname = self.parse_field_name()?;
            
            
            if self.token == token::Eq {
                self.diagnostic()
                    .struct_span_err(self.token.span, "expected `:`, found `=`")
                    .span_suggestion(
                        fieldname.span.shrink_to_hi().to(self.token.span),
                        "replace equals symbol with a colon",
                        ":".to_string(),
                        Applicability::MachineApplicable,
                    )
                    .emit();
            }
            self.bump(); 
            (fieldname, self.parse_expr()?, false)
        } else {
            let fieldname = self.parse_ident_common(false)?;
            
            let path = ast::Path::from_ident(fieldname);
            let expr = self.mk_expr(fieldname.span, ExprKind::Path(None, path), ThinVec::new());
            (fieldname, expr, true)
        };
        Ok(ast::Field {
            ident: fieldname,
            span: lo.to(expr.span),
            expr,
            is_shorthand,
            attrs: attrs.into(),
            id: ast::DUMMY_NODE_ID,
        })
    }
    fn err_dotdotdot_syntax(&self, span: Span) {
        self.struct_span_err(span, "unexpected token: `...`")
            .span_suggestion(
                span,
                "use `..` for an exclusive range", "..".to_owned(),
                Applicability::MaybeIncorrect
            )
            .span_suggestion(
                span,
                "or `..=` for an inclusive range", "..=".to_owned(),
                Applicability::MaybeIncorrect
            )
            .emit();
    }
    fn err_larrow_operator(&self, span: Span) {
        self.struct_span_err(
            span,
            "unexpected token: `<-`"
        ).span_suggestion(
            span,
            "if you meant to write a comparison against a negative value, add a \
             space in between `<` and `-`",
            "< -".to_string(),
            Applicability::MaybeIncorrect
        ).emit();
    }
    fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
        ExprKind::AssignOp(binop, lhs, rhs)
    }
    fn mk_range(
        &self,
        start: Option<P<Expr>>,
        end: Option<P<Expr>>,
        limits: RangeLimits
    ) -> PResult<'a, ExprKind> {
        if end.is_none() && limits == RangeLimits::Closed {
            Err(self.span_fatal_err(self.token.span, Error::InclusiveRangeWithNoEnd))
        } else {
            Ok(ExprKind::Range(start, end, limits))
        }
    }
    fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
        ExprKind::Unary(unop, expr)
    }
    fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
        ExprKind::Binary(binop, lhs, rhs)
    }
    fn mk_index(&self, expr: P<Expr>, idx: P<Expr>) -> ExprKind {
        ExprKind::Index(expr, idx)
    }
    fn mk_call(&self, f: P<Expr>, args: Vec<P<Expr>>) -> ExprKind {
        ExprKind::Call(f, args)
    }
    fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
        let span = lo.to(self.prev_span);
        let await_expr = self.mk_expr(span, ExprKind::Await(self_arg), ThinVec::new());
        self.recover_from_await_method_call();
        Ok(await_expr)
    }
    crate fn mk_expr(&self, span: Span, node: ExprKind, attrs: ThinVec<Attribute>) -> P<Expr> {
        P(Expr { node, span, attrs, id: ast::DUMMY_NODE_ID })
    }
}