1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
use crate::ast::Ident;
use crate::ext::base::ExtCtxt;
use crate::ext::expand::Marker;
use crate::ext::tt::macro_parser::{MatchedNonterminal, MatchedSeq, NamedMatch};
use crate::ext::tt::quoted;
use crate::mut_visit::noop_visit_tt;
use crate::parse::token::{self, NtTT, Token};
use crate::tokenstream::{DelimSpan, TokenStream, TokenTree, TreeAndJoint};

use smallvec::{smallvec, SmallVec};
use syntax_pos::DUMMY_SP;

use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::Lrc;
use std::mem;
use std::rc::Rc;

/// An iterator over the token trees in a delimited token tree (`{ ... }`) or a sequence (`$(...)`).
enum Frame {
    Delimited { forest: Lrc<quoted::Delimited>, idx: usize, span: DelimSpan },
    Sequence { forest: Lrc<quoted::SequenceRepetition>, idx: usize, sep: Option<Token> },
}

impl Frame {
    /// Construct a new frame around the delimited set of tokens.
    fn new(tts: Vec<quoted::TokenTree>) -> Frame {
        let forest = Lrc::new(quoted::Delimited { delim: token::NoDelim, tts: tts });
        Frame::Delimited { forest: forest, idx: 0, span: DelimSpan::dummy() }
    }
}

impl Iterator for Frame {
    type Item = quoted::TokenTree;

    fn next(&mut self) -> Option<quoted::TokenTree> {
        match *self {
            Frame::Delimited { ref forest, ref mut idx, .. } => {
                *idx += 1;
                forest.tts.get(*idx - 1).cloned()
            }
            Frame::Sequence { ref forest, ref mut idx, .. } => {
                *idx += 1;
                forest.tts.get(*idx - 1).cloned()
            }
        }
    }
}

/// This can do Macro-By-Example transcription.
/// - `interp` is a map of meta-variables to the tokens (non-terminals) they matched in the
///   invocation. We are assuming we already know there is a match.
/// - `src` is the RHS of the MBE, that is, the "example" we are filling in.
///
/// For example,
///
/// ```rust
/// macro_rules! foo {
///     ($id:ident) => { println!("{}", stringify!($id)); }
/// }
///
/// foo!(bar);
/// ```
///
/// `interp` would contain `$id => bar` and `src` would contain `println!("{}", stringify!($id));`.
///
/// `transcribe` would return a `TokenStream` containing `println!("{}", stringify!(bar));`.
///
/// Along the way, we do some additional error checking.
pub fn transcribe(
    cx: &ExtCtxt<'_>,
    interp: &FxHashMap<Ident, Rc<NamedMatch>>,
    src: Vec<quoted::TokenTree>,
) -> TokenStream {
    // Nothing for us to transcribe...
    if src.is_empty() {
        return TokenStream::empty();
    }

    // We descend into the RHS (`src`), expanding things as we go. This stack contains the things
    // we have yet to expand/are still expanding. We start the stack off with the whole RHS.
    let mut stack: SmallVec<[Frame; 1]> = smallvec![Frame::new(src)];

    // As we descend in the RHS, we will need to be able to match nested sequences of matchers.
    // `repeats` keeps track of where we are in matching at each level, with the last element being
    // the most deeply nested sequence. This is used as a stack.
    let mut repeats = Vec::new();

    // `result` contains resulting token stream from the TokenTree we just finished processing. At
    // the end, this will contain the full result of transcription, but at arbitrary points during
    // `transcribe`, `result` will contain subsets of the final result.
    //
    // Specifically, as we descend into each TokenTree, we will push the existing results onto the
    // `result_stack` and clear `results`. We will then produce the results of transcribing the
    // TokenTree into `results`. Then, as we unwind back out of the `TokenTree`, we will pop the
    // `result_stack` and append `results` too it to produce the new `results` up to that point.
    //
    // Thus, if we try to pop the `result_stack` and it is empty, we have reached the top-level
    // again, and we are done transcribing.
    let mut result: Vec<TreeAndJoint> = Vec::new();
    let mut result_stack = Vec::new();

    loop {
        // Look at the last frame on the stack.
        let tree = if let Some(tree) = stack.last_mut().unwrap().next() {
            // If it still has a TokenTree we have not looked at yet, use that tree.
            tree
        }
        // The else-case never produces a value for `tree` (it `continue`s or `return`s).
        else {
            // Otherwise, if we have just reached the end of a sequence and we can keep repeating,
            // go back to the beginning of the sequence.
            if let Frame::Sequence { ref mut idx, ref sep, .. } = *stack.last_mut().unwrap() {
                let (ref mut repeat_idx, repeat_len) = *repeats.last_mut().unwrap();
                *repeat_idx += 1;
                if *repeat_idx < repeat_len {
                    *idx = 0;
                    if let Some(sep) = sep.clone() {
                        let prev_span = match result.last() {
                            Some((tt, _)) => tt.span(),
                            None => DUMMY_SP,
                        };
                        result.push(TokenTree::Token(prev_span, sep).into());
                    }
                    continue;
                }
            }

            // We are done with the top of the stack. Pop it. Depending on what it was, we do
            // different things. Note that the outermost item must be the delimited, wrapped RHS
            // that was passed in originally to `transcribe`.
            match stack.pop().unwrap() {
                // Done with a sequence. Pop from repeats.
                Frame::Sequence { .. } => {
                    repeats.pop();
                }

                // We are done processing a Delimited. If this is the top-level delimited, we are
                // done. Otherwise, we unwind the result_stack to append what we have produced to
                // any previous results.
                Frame::Delimited { forest, span, .. } => {
                    if result_stack.is_empty() {
                        // No results left to compute! We are back at the top-level.
                        return TokenStream::new(result);
                    }

                    // Step back into the parent Delimited.
                    let tree =
                        TokenTree::Delimited(span, forest.delim, TokenStream::new(result).into());
                    result = result_stack.pop().unwrap();
                    result.push(tree.into());
                }
            }
            continue;
        };

        // At this point, we know we are in the middle of a TokenTree (the last one on `stack`).
        // `tree` contains the next `TokenTree` to be processed.
        match tree {
            // We are descending into a sequence. We first make sure that the matchers in the RHS
            // and the matches in `interp` have the same shape. Otherwise, either the caller or the
            // macro writer has made a mistake.
            seq @ quoted::TokenTree::Sequence(..) => {
                match lockstep_iter_size(&seq, interp, &repeats) {
                    LockstepIterSize::Unconstrained => {
                        cx.span_fatal(
                            seq.span(), /* blame macro writer */
                            "attempted to repeat an expression containing no syntax variables \
                             matched as repeating at this depth",
                        );
                    }

                    LockstepIterSize::Contradiction(ref msg) => {
                        // FIXME: this really ought to be caught at macro definition time... It
                        // happens when two meta-variables are used in the same repetition in a
                        // sequence, but they come from different sequence matchers and repeat
                        // different amounts.
                        cx.span_fatal(seq.span(), &msg[..]);
                    }

                    LockstepIterSize::Constraint(len, _) => {
                        // We do this to avoid an extra clone above. We know that this is a
                        // sequence already.
                        let (sp, seq) = if let quoted::TokenTree::Sequence(sp, seq) = seq {
                            (sp, seq)
                        } else {
                            unreachable!()
                        };

                        // Is the repetition empty?
                        if len == 0 {
                            if seq.op == quoted::KleeneOp::OneOrMore {
                                // FIXME: this really ought to be caught at macro definition
                                // time... It happens when the Kleene operator in the matcher and
                                // the body for the same meta-variable do not match.
                                cx.span_fatal(sp.entire(), "this must repeat at least once");
                            }
                        } else {
                            // 0 is the initial counter (we have done 0 repretitions so far). `len`
                            // is the total number of reptitions we should generate.
                            repeats.push((0, len));

                            // The first time we encounter the sequence we push it to the stack. It
                            // then gets reused (see the beginning of the loop) until we are done
                            // repeating.
                            stack.push(Frame::Sequence {
                                idx: 0,
                                sep: seq.separator.clone(),
                                forest: seq,
                            });
                        }
                    }
                }
            }

            // Replace the meta-var with the matched token tree from the invocation.
            quoted::TokenTree::MetaVar(mut sp, ident) => {
                // Find the matched nonterminal from the macro invocation, and use it to replace
                // the meta-var.
                if let Some(cur_matched) = lookup_cur_matched(ident, interp, &repeats) {
                    if let MatchedNonterminal(ref nt) = *cur_matched {
                        // FIXME #2887: why do we apply a mark when matching a token tree meta-var
                        // (e.g. `$x:tt`), but not when we are matching any other type of token
                        // tree?
                        if let NtTT(ref tt) = **nt {
                            result.push(tt.clone().into());
                        } else {
                            sp = sp.apply_mark(cx.current_expansion.mark);
                            let token = TokenTree::Token(sp, Token::Interpolated(nt.clone()));
                            result.push(token.into());
                        }
                    } else {
                        // We were unable to descend far enough. This is an error.
                        cx.span_fatal(
                            sp, /* blame the macro writer */
                            &format!("variable '{}' is still repeating at this depth", ident),
                        );
                    }
                } else {
                    // If we aren't able to match the meta-var, we push it back into the result but
                    // with modified syntax context. (I believe this supports nested macros).
                    let ident =
                        Ident::new(ident.name, ident.span.apply_mark(cx.current_expansion.mark));
                    sp = sp.apply_mark(cx.current_expansion.mark);
                    result.push(TokenTree::Token(sp, token::Dollar).into());
                    result.push(TokenTree::Token(sp, token::Token::from_ast_ident(ident)).into());
                }
            }

            // If we are entering a new delimiter, we push its contents to the `stack` to be
            // processed, and we push all of the currently produced results to the `result_stack`.
            // We will produce all of the results of the inside of the `Delimited` and then we will
            // jump back out of the Delimited, pop the result_stack and add the new results back to
            // the previous results (from outside the Delimited).
            quoted::TokenTree::Delimited(mut span, delimited) => {
                span = span.apply_mark(cx.current_expansion.mark);
                stack.push(Frame::Delimited { forest: delimited, idx: 0, span: span });
                result_stack.push(mem::replace(&mut result, Vec::new()));
            }

            // Nothing much to do here. Just push the token to the result, being careful to
            // preserve syntax context.
            quoted::TokenTree::Token(sp, tok) => {
                let mut marker = Marker(cx.current_expansion.mark);
                let mut tt = TokenTree::Token(sp, tok);
                noop_visit_tt(&mut tt, &mut marker);
                result.push(tt.into());
            }

            // There should be no meta-var declarations in the invocation of a macro.
            quoted::TokenTree::MetaVarDecl(..) => panic!("unexpected `TokenTree::MetaVarDecl"),
        }
    }
}

/// Lookup the meta-var named `ident` and return the matched token tree from the invocation using
/// the set of matches `interpolations`.
///
/// See the definition of `repeats` in the `transcribe` function. `repeats` is used to descend
/// into the right place in nested matchers. If we attempt to descend too far, the macro writer has
/// made a mistake, and we return `None`.
fn lookup_cur_matched(
    ident: Ident,
    interpolations: &FxHashMap<Ident, Rc<NamedMatch>>,
    repeats: &[(usize, usize)],
) -> Option<Rc<NamedMatch>> {
    interpolations.get(&ident).map(|matched| {
        let mut matched = matched.clone();
        for &(idx, _) in repeats {
            let m = matched.clone();
            match *m {
                MatchedNonterminal(_) => break,
                MatchedSeq(ref ads, _) => matched = Rc::new(ads[idx].clone()),
            }
        }

        matched
    })
}

/// An accumulator over a TokenTree to be used with `fold`. During transcription, we need to make
/// sure that the size of each sequence and all of its nested sequences are the same as the sizes
/// of all the matched (nested) sequences in the macro invocation. If they don't match, somebody
/// has made a mistake (either the macro writer or caller).
#[derive(Clone)]
enum LockstepIterSize {
    /// No constraints on length of matcher. This is true for any TokenTree variants except a
    /// `MetaVar` with an actual `MatchedSeq` (as opposed to a `MatchedNonterminal`).
    Unconstrained,

    /// A `MetaVar` with an actual `MatchedSeq`. The length of the match and the name of the
    /// meta-var are returned.
    Constraint(usize, Ident),

    /// Two `Constraint`s on the same sequence had different lengths. This is an error.
    Contradiction(String),
}

impl LockstepIterSize {
    /// Find incompatibilities in matcher/invocation sizes.
    /// - `Unconstrained` is compatible with everything.
    /// - `Contradiction` is incompatible with everything.
    /// - `Constraint(len)` is only compatible with other constraints of the same length.
    fn with(self, other: LockstepIterSize) -> LockstepIterSize {
        match self {
            LockstepIterSize::Unconstrained => other,
            LockstepIterSize::Contradiction(_) => self,
            LockstepIterSize::Constraint(l_len, ref l_id) => match other {
                LockstepIterSize::Unconstrained => self,
                LockstepIterSize::Contradiction(_) => other,
                LockstepIterSize::Constraint(r_len, _) if l_len == r_len => self,
                LockstepIterSize::Constraint(r_len, r_id) => {
                    let msg = format!(
                        "meta-variable `{}` repeats {} times, but `{}` repeats {} times",
                        l_id, l_len, r_id, r_len
                    );
                    LockstepIterSize::Contradiction(msg)
                }
            },
        }
    }
}

/// Given a `tree`, make sure that all sequences have the same length as the matches for the
/// appropriate meta-vars in `interpolations`.
///
/// Note that if `repeats` does not match the exact correct depth of a meta-var,
/// `lookup_cur_matched` will return `None`, which is why this still works even in the presnece of
/// multiple nested matcher sequences.
fn lockstep_iter_size(
    tree: &quoted::TokenTree,
    interpolations: &FxHashMap<Ident, Rc<NamedMatch>>,
    repeats: &[(usize, usize)],
) -> LockstepIterSize {
    use quoted::TokenTree;
    match *tree {
        TokenTree::Delimited(_, ref delimed) => {
            delimed.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
                size.with(lockstep_iter_size(tt, interpolations, repeats))
            })
        }
        TokenTree::Sequence(_, ref seq) => {
            seq.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
                size.with(lockstep_iter_size(tt, interpolations, repeats))
            })
        }
        TokenTree::MetaVar(_, name) | TokenTree::MetaVarDecl(_, name, _) => {
            match lookup_cur_matched(name, interpolations, repeats) {
                Some(matched) => match *matched {
                    MatchedNonterminal(_) => LockstepIterSize::Unconstrained,
                    MatchedSeq(ref ads, _) => LockstepIterSize::Constraint(ads.len(), name),
                },
                _ => LockstepIterSize::Unconstrained,
            }
        }
        TokenTree::Token(..) => LockstepIterSize::Unconstrained,
    }
}