1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
use crate::abi::call::{FnType, ArgType, Reg, RegKind, Uniform};
use crate::abi::{Endian, HasDataLayout, LayoutOf, TyLayout, TyLayoutMethods};
use crate::spec::HasTargetSpec;
#[derive(Debug, Clone, Copy, PartialEq)]
enum ABI {
ELFv1,
ELFv2,
}
use ABI::*;
fn is_homogeneous_aggregate<'a, Ty, C>(cx: &C, arg: &mut ArgType<'a, Ty>, abi: ABI)
-> Option<Uniform>
where Ty: TyLayoutMethods<'a, C> + Copy,
C: LayoutOf<Ty = Ty, TyLayout = TyLayout<'a, Ty>> + HasDataLayout
{
arg.layout.homogeneous_aggregate(cx).unit().and_then(|unit| {
if (abi == ELFv1 && arg.layout.size > unit.size)
|| arg.layout.size > unit.size.checked_mul(8, cx).unwrap() {
return None;
}
let valid_unit = match unit.kind {
RegKind::Integer => false,
RegKind::Float => true,
RegKind::Vector => arg.layout.size.bits() == 128
};
if valid_unit {
Some(Uniform {
unit,
total: arg.layout.size
})
} else {
None
}
})
}
fn classify_ret_ty<'a, Ty, C>(cx: &C, ret: &mut ArgType<'a, Ty>, abi: ABI)
where Ty: TyLayoutMethods<'a, C> + Copy,
C: LayoutOf<Ty = Ty, TyLayout = TyLayout<'a, Ty>> + HasDataLayout
{
if !ret.layout.is_aggregate() {
ret.extend_integer_width_to(64);
return;
}
if abi == ELFv1 {
ret.make_indirect();
return;
}
if let Some(uniform) = is_homogeneous_aggregate(cx, ret, abi) {
ret.cast_to(uniform);
return;
}
let size = ret.layout.size;
let bits = size.bits();
if bits <= 128 {
let unit = if cx.data_layout().endian == Endian::Big {
Reg { kind: RegKind::Integer, size }
} else if bits <= 8 {
Reg::i8()
} else if bits <= 16 {
Reg::i16()
} else if bits <= 32 {
Reg::i32()
} else {
Reg::i64()
};
ret.cast_to(Uniform {
unit,
total: size
});
return;
}
ret.make_indirect();
}
fn classify_arg_ty<'a, Ty, C>(cx: &C, arg: &mut ArgType<'a, Ty>, abi: ABI)
where Ty: TyLayoutMethods<'a, C> + Copy,
C: LayoutOf<Ty = Ty, TyLayout = TyLayout<'a, Ty>> + HasDataLayout
{
if !arg.layout.is_aggregate() {
arg.extend_integer_width_to(64);
return;
}
if let Some(uniform) = is_homogeneous_aggregate(cx, arg, abi) {
arg.cast_to(uniform);
return;
}
let size = arg.layout.size;
let (unit, total) = if size.bits() <= 64 {
(Reg { kind: RegKind::Integer, size }, size)
} else {
let reg_i64 = Reg::i64();
(reg_i64, size.align_to(reg_i64.align(cx)))
};
arg.cast_to(Uniform {
unit,
total
});
}
pub fn compute_abi_info<'a, Ty, C>(cx: &C, fty: &mut FnType<'a, Ty>)
where Ty: TyLayoutMethods<'a, C> + Copy,
C: LayoutOf<Ty = Ty, TyLayout = TyLayout<'a, Ty>> + HasDataLayout + HasTargetSpec
{
let abi = if cx.target_spec().target_env == "musl" {
ELFv2
} else {
match cx.data_layout().endian {
Endian::Big => ELFv1,
Endian::Little => ELFv2
}
};
if !fty.ret.is_ignore() {
classify_ret_ty(cx, &mut fty.ret, abi);
}
for arg in &mut fty.args {
if arg.is_ignore() { continue; }
classify_arg_ty(cx, arg, abi);
}
}