1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
//! Algorithm citation:
//! A Simple, Fast Dominance Algorithm.
//! Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy
//! Rice Computer Science TS-06-33870
//! <https://www.cs.rice.edu/~keith/EMBED/dom.pdf>

use super::super::indexed_vec::{Idx, IndexVec};
use super::iterate::reverse_post_order;
use super::ControlFlowGraph;

use std::fmt;

#[cfg(test)]
mod test;

pub fn dominators<G: ControlFlowGraph>(graph: &G) -> Dominators<G::Node> {
    let start_node = graph.start_node();
    let rpo = reverse_post_order(graph, start_node);
    dominators_given_rpo(graph, &rpo)
}

pub fn dominators_given_rpo<G: ControlFlowGraph>(
    graph: &G,
    rpo: &[G::Node],
) -> Dominators<G::Node> {
    let start_node = graph.start_node();
    assert_eq!(rpo[0], start_node);

    // compute the post order index (rank) for each node
    let mut post_order_rank: IndexVec<G::Node, usize> =
        (0..graph.num_nodes()).map(|_| 0).collect();
    for (index, node) in rpo.iter().rev().cloned().enumerate() {
        post_order_rank[node] = index;
    }

    let mut immediate_dominators: IndexVec<G::Node, Option<G::Node>> =
        (0..graph.num_nodes()).map(|_| None).collect();
    immediate_dominators[start_node] = Some(start_node);

    let mut changed = true;
    while changed {
        changed = false;

        for &node in &rpo[1..] {
            let mut new_idom = None;
            for pred in graph.predecessors(node) {
                if immediate_dominators[pred].is_some() {
                    // (*)
                    // (*) dominators for `pred` have been calculated
                    new_idom = intersect_opt(
                        &post_order_rank,
                        &immediate_dominators,
                        new_idom,
                        Some(pred),
                    );
                }
            }

            if new_idom != immediate_dominators[node] {
                immediate_dominators[node] = new_idom;
                changed = true;
            }
        }
    }

    Dominators {
        post_order_rank,
        immediate_dominators,
    }
}

fn intersect_opt<Node: Idx>(
    post_order_rank: &IndexVec<Node, usize>,
    immediate_dominators: &IndexVec<Node, Option<Node>>,
    node1: Option<Node>,
    node2: Option<Node>,
) -> Option<Node> {
    match (node1, node2) {
        (None, None) => None,
        (Some(n), None) | (None, Some(n)) => Some(n),
        (Some(n1), Some(n2)) => Some(intersect(post_order_rank, immediate_dominators, n1, n2)),
    }
}

fn intersect<Node: Idx>(
    post_order_rank: &IndexVec<Node, usize>,
    immediate_dominators: &IndexVec<Node, Option<Node>>,
    mut node1: Node,
    mut node2: Node,
) -> Node {
    while node1 != node2 {
        while post_order_rank[node1] < post_order_rank[node2] {
            node1 = immediate_dominators[node1].unwrap();
        }

        while post_order_rank[node2] < post_order_rank[node1] {
            node2 = immediate_dominators[node2].unwrap();
        }
    }

    node1
}

#[derive(Clone, Debug)]
pub struct Dominators<N: Idx> {
    post_order_rank: IndexVec<N, usize>,
    immediate_dominators: IndexVec<N, Option<N>>,
}

impl<Node: Idx> Dominators<Node> {
    pub fn is_reachable(&self, node: Node) -> bool {
        self.immediate_dominators[node].is_some()
    }

    pub fn immediate_dominator(&self, node: Node) -> Node {
        assert!(self.is_reachable(node), "node {:?} is not reachable", node);
        self.immediate_dominators[node].unwrap()
    }

    pub fn dominators(&self, node: Node) -> Iter<'_, Node> {
        assert!(self.is_reachable(node), "node {:?} is not reachable", node);
        Iter {
            dominators: self,
            node: Some(node),
        }
    }

    pub fn is_dominated_by(&self, node: Node, dom: Node) -> bool {
        // FIXME -- could be optimized by using post-order-rank
        self.dominators(node).any(|n| n == dom)
    }

    #[cfg(test)]
    fn all_immediate_dominators(&self) -> &IndexVec<Node, Option<Node>> {
        &self.immediate_dominators
    }
}

pub struct Iter<'dom, Node: Idx> {
    dominators: &'dom Dominators<Node>,
    node: Option<Node>,
}

impl<'dom, Node: Idx> Iterator for Iter<'dom, Node> {
    type Item = Node;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(node) = self.node {
            let dom = self.dominators.immediate_dominator(node);
            if dom == node {
                self.node = None; // reached the root
            } else {
                self.node = Some(dom);
            }
            return Some(node);
        } else {
            return None;
        }
    }
}

pub struct DominatorTree<N: Idx> {
    root: N,
    children: IndexVec<N, Vec<N>>,
}

impl<Node: Idx> DominatorTree<Node> {
    pub fn children(&self, node: Node) -> &[Node] {
        &self.children[node]
    }
}

impl<Node: Idx> fmt::Debug for DominatorTree<Node> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(
            &DominatorTreeNode {
                tree: self,
                node: self.root,
            },
            fmt,
        )
    }
}

struct DominatorTreeNode<'tree, Node: Idx> {
    tree: &'tree DominatorTree<Node>,
    node: Node,
}

impl<'tree, Node: Idx> fmt::Debug for DominatorTreeNode<'tree, Node> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        let subtrees: Vec<_> = self.tree
            .children(self.node)
            .iter()
            .map(|&child| DominatorTreeNode {
                tree: self.tree,
                node: child,
            })
            .collect();
        fmt.debug_tuple("")
            .field(&self.node)
            .field(&subtrees)
            .finish()
    }
}