1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use array_vec::ArrayVec;
use std::fmt;
use std::iter;
use std::marker::PhantomData;
use std::mem;
use std::slice;
use bitslice::{BitSlice, Word};
use bitslice::{bitwise, Union, Subtract, Intersect};
use indexed_vec::Idx;
use rustc_serialize;

/// Represents a set of some element type E, where each E is identified by some
/// unique index type `T`.
///
/// In other words, `T` is the type used to index into the bitvector
/// this type uses to represent the set of object it holds.
///
/// The representation is dense, using one bit per possible element.
#[derive(Eq, PartialEq)]
pub struct IdxSet<T: Idx> {
    _pd: PhantomData<fn(&T)>,
    bits: Vec<Word>,
}

impl<T: Idx> Clone for IdxSet<T> {
    fn clone(&self) -> Self {
        IdxSet { _pd: PhantomData, bits: self.bits.clone() }
    }
}

impl<T: Idx> rustc_serialize::Encodable for IdxSet<T> {
    fn encode<E: rustc_serialize::Encoder>(&self,
                                     encoder: &mut E)
                                     -> Result<(), E::Error> {
        self.bits.encode(encoder)
    }
}

impl<T: Idx> rustc_serialize::Decodable for IdxSet<T> {
    fn decode<D: rustc_serialize::Decoder>(d: &mut D) -> Result<IdxSet<T>, D::Error> {
        let words: Vec<Word> = rustc_serialize::Decodable::decode(d)?;

        Ok(IdxSet {
            _pd: PhantomData,
            bits: words,
        })
    }
}

const BITS_PER_WORD: usize = mem::size_of::<Word>() * 8;

impl<T: Idx> fmt::Debug for IdxSet<T> {
    fn fmt(&self, w: &mut fmt::Formatter) -> fmt::Result {
        w.debug_list()
         .entries(self.iter())
         .finish()
    }
}

impl<T: Idx> IdxSet<T> {
    fn new(init: Word, universe_size: usize) -> Self {
        let num_words = (universe_size + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
        IdxSet {
            _pd: Default::default(),
            bits: vec![init; num_words],
        }
    }

    /// Creates set holding every element whose index falls in range 0..universe_size.
    pub fn new_filled(universe_size: usize) -> Self {
        let mut result = Self::new(!0, universe_size);
        result.trim_to(universe_size);
        result
    }

    /// Creates set holding no elements.
    pub fn new_empty(universe_size: usize) -> Self {
        Self::new(0, universe_size)
    }

    /// Duplicates as a hybrid set.
    pub fn to_hybrid(&self) -> HybridIdxSet<T> {
        // This universe_size may be slightly larger than the one specified
        // upon creation, due to rounding up to a whole word. That's ok.
        let universe_size = self.bits.len() * BITS_PER_WORD;

        // Note: we currently don't bother trying to make a Sparse set.
        HybridIdxSet::Dense(self.to_owned(), universe_size)
    }

    /// Removes all elements
    pub fn clear(&mut self) {
        for b in &mut self.bits {
            *b = 0;
        }
    }

    /// Sets all elements up to `universe_size`
    pub fn set_up_to(&mut self, universe_size: usize) {
        for b in &mut self.bits {
            *b = !0;
        }
        self.trim_to(universe_size);
    }

    /// Clear all elements above `universe_size`.
    fn trim_to(&mut self, universe_size: usize) {
        // `trim_block` is the first block where some bits have
        // to be cleared.
        let trim_block = universe_size / BITS_PER_WORD;

        // all the blocks above it have to be completely cleared.
        if trim_block < self.bits.len() {
            for b in &mut self.bits[trim_block+1..] {
                *b = 0;
            }

            // at that block, the `universe_size % BITS_PER_WORD` lsbs
            // should remain.
            let remaining_bits = universe_size % BITS_PER_WORD;
            let mask = (1<<remaining_bits)-1;
            self.bits[trim_block] &= mask;
        }
    }

    /// Removes `elem` from the set `self`; returns true iff this changed `self`.
    pub fn remove(&mut self, elem: &T) -> bool {
        self.bits.clear_bit(elem.index())
    }

    /// Adds `elem` to the set `self`; returns true iff this changed `self`.
    pub fn add(&mut self, elem: &T) -> bool {
        self.bits.set_bit(elem.index())
    }

    /// Returns true iff set `self` contains `elem`.
    pub fn contains(&self, elem: &T) -> bool {
        self.bits.get_bit(elem.index())
    }

    pub fn words(&self) -> &[Word] {
        &self.bits
    }

    pub fn words_mut(&mut self) -> &mut [Word] {
        &mut self.bits
    }

    /// Efficiently overwrite `self` with `other`. Panics if `self` and `other`
    /// don't have the same length.
    pub fn overwrite(&mut self, other: &IdxSet<T>) {
        self.words_mut().clone_from_slice(other.words());
    }

    /// Set `self = self | other` and return true if `self` changed
    /// (i.e., if new bits were added).
    pub fn union(&mut self, other: &IdxSet<T>) -> bool {
        bitwise(self.words_mut(), other.words(), &Union)
    }

    /// Like `union()`, but takes a `SparseIdxSet` argument.
    fn union_sparse(&mut self, other: &SparseIdxSet<T>) -> bool {
        let mut changed = false;
        for elem in other.iter() {
            changed |= self.add(&elem);
        }
        changed
    }

    /// Like `union()`, but takes a `HybridIdxSet` argument.
    pub fn union_hybrid(&mut self, other: &HybridIdxSet<T>) -> bool {
        match other {
            HybridIdxSet::Sparse(sparse, _) => self.union_sparse(sparse),
            HybridIdxSet::Dense(dense, _) => self.union(dense),
        }
    }

    /// Set `self = self - other` and return true if `self` changed.
    /// (i.e., if any bits were removed).
    pub fn subtract(&mut self, other: &IdxSet<T>) -> bool {
        bitwise(self.words_mut(), other.words(), &Subtract)
    }

    /// Like `subtract()`, but takes a `SparseIdxSet` argument.
    fn subtract_sparse(&mut self, other: &SparseIdxSet<T>) -> bool {
        let mut changed = false;
        for elem in other.iter() {
            changed |= self.remove(&elem);
        }
        changed
    }

    /// Like `subtract()`, but takes a `HybridIdxSet` argument.
    pub fn subtract_hybrid(&mut self, other: &HybridIdxSet<T>) -> bool {
        match other {
            HybridIdxSet::Sparse(sparse, _) => self.subtract_sparse(sparse),
            HybridIdxSet::Dense(dense, _) => self.subtract(dense),
        }
    }

    /// Set `self = self & other` and return true if `self` changed.
    /// (i.e., if any bits were removed).
    pub fn intersect(&mut self, other: &IdxSet<T>) -> bool {
        bitwise(self.words_mut(), other.words(), &Intersect)
    }

    pub fn iter(&self) -> Iter<T> {
        Iter {
            cur: None,
            iter: self.words().iter().enumerate(),
            _pd: PhantomData,
        }
    }
}

pub struct Iter<'a, T: Idx> {
    cur: Option<(Word, usize)>,
    iter: iter::Enumerate<slice::Iter<'a, Word>>,
    _pd: PhantomData<fn(&T)>,
}

impl<'a, T: Idx> Iterator for Iter<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        loop {
            if let Some((ref mut word, offset)) = self.cur {
                let bit_pos = word.trailing_zeros() as usize;
                if bit_pos != BITS_PER_WORD {
                    let bit = 1 << bit_pos;
                    *word ^= bit;
                    return Some(T::new(bit_pos + offset))
                }
            }

            let (i, word) = self.iter.next()?;
            self.cur = Some((*word, BITS_PER_WORD * i));
        }
    }
}

const SPARSE_MAX: usize = 8;

/// A sparse index set with a maximum of SPARSE_MAX elements. Used by
/// HybridIdxSet; do not use directly.
///
/// The elements are stored as an unsorted vector with no duplicates.
#[derive(Clone, Debug)]
pub struct SparseIdxSet<T: Idx>(ArrayVec<[T; SPARSE_MAX]>);

impl<T: Idx> SparseIdxSet<T> {
    fn new() -> Self {
        SparseIdxSet(ArrayVec::new())
    }

    fn len(&self) -> usize {
        self.0.len()
    }

    fn contains(&self, elem: &T) -> bool {
        self.0.contains(elem)
    }

    fn add(&mut self, elem: &T) -> bool {
        // Ensure there are no duplicates.
        if self.0.contains(elem) {
            false
        } else {
            self.0.push(*elem);
            true
        }
    }

    fn remove(&mut self, elem: &T) -> bool {
        if let Some(i) = self.0.iter().position(|e| e == elem) {
            // Swap the found element to the end, then pop it.
            let len = self.0.len();
            self.0.swap(i, len - 1);
            self.0.pop();
            true
        } else {
            false
        }
    }

    fn to_dense(&self, universe_size: usize) -> IdxSet<T> {
        let mut dense = IdxSet::new_empty(universe_size);
        for elem in self.0.iter() {
            dense.add(elem);
        }
        dense
    }

    fn iter(&self) -> SparseIter<T> {
        SparseIter {
            iter: self.0.iter(),
        }
    }
}

pub struct SparseIter<'a, T: Idx> {
    iter: slice::Iter<'a, T>,
}

impl<'a, T: Idx> Iterator for SparseIter<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        self.iter.next().map(|e| *e)
    }
}

/// Like IdxSet, but with a hybrid representation: sparse when there are few
/// elements in the set, but dense when there are many. It's especially
/// efficient for sets that typically have a small number of elements, but a
/// large `universe_size`, and are cleared frequently.
#[derive(Clone, Debug)]
pub enum HybridIdxSet<T: Idx> {
    Sparse(SparseIdxSet<T>, usize),
    Dense(IdxSet<T>, usize),
}

impl<T: Idx> HybridIdxSet<T> {
    pub fn new_empty(universe_size: usize) -> Self {
        HybridIdxSet::Sparse(SparseIdxSet::new(), universe_size)
    }

    fn universe_size(&mut self) -> usize {
        match *self {
            HybridIdxSet::Sparse(_, size) => size,
            HybridIdxSet::Dense(_, size) => size,
        }
    }

    pub fn clear(&mut self) {
        let universe_size = self.universe_size();
        *self = HybridIdxSet::new_empty(universe_size);
    }

    /// Returns true iff set `self` contains `elem`.
    pub fn contains(&self, elem: &T) -> bool {
        match self {
            HybridIdxSet::Sparse(sparse, _) => sparse.contains(elem),
            HybridIdxSet::Dense(dense, _) => dense.contains(elem),
        }
    }

    /// Adds `elem` to the set `self`.
    pub fn add(&mut self, elem: &T) -> bool {
        match self {
            HybridIdxSet::Sparse(sparse, _) if sparse.len() < SPARSE_MAX => {
                // The set is sparse and has space for `elem`.
                sparse.add(elem)
            }
            HybridIdxSet::Sparse(sparse, _) if sparse.contains(elem) => {
                // The set is sparse and does not have space for `elem`, but
                // that doesn't matter because `elem` is already present.
                false
            }
            HybridIdxSet::Sparse(_, _) => {
                // The set is sparse and full. Convert to a dense set.
                //
                // FIXME: This code is awful, but I can't work out how else to
                //        appease the borrow checker.
                let dummy = HybridIdxSet::Sparse(SparseIdxSet::new(), 0);
                match mem::replace(self, dummy) {
                    HybridIdxSet::Sparse(sparse, universe_size) => {
                        let mut dense = sparse.to_dense(universe_size);
                        let changed = dense.add(elem);
                        assert!(changed);
                        mem::replace(self, HybridIdxSet::Dense(dense, universe_size));
                        changed
                    }
                    _ => panic!("impossible"),
                }
            }

            HybridIdxSet::Dense(dense, _) => dense.add(elem),
        }
    }

    /// Removes `elem` from the set `self`.
    pub fn remove(&mut self, elem: &T) -> bool {
        // Note: we currently don't bother going from Dense back to Sparse.
        match self {
            HybridIdxSet::Sparse(sparse, _) => sparse.remove(elem),
            HybridIdxSet::Dense(dense, _) => dense.remove(elem),
        }
    }

    /// Converts to a dense set, consuming itself in the process.
    pub fn to_dense(self) -> IdxSet<T> {
        match self {
            HybridIdxSet::Sparse(sparse, universe_size) => sparse.to_dense(universe_size),
            HybridIdxSet::Dense(dense, _) => dense,
        }
    }

    /// Iteration order is unspecified.
    pub fn iter(&self) -> HybridIter<T> {
        match self {
            HybridIdxSet::Sparse(sparse, _) => HybridIter::Sparse(sparse.iter()),
            HybridIdxSet::Dense(dense, _) => HybridIter::Dense(dense.iter()),
        }
    }
}

pub enum HybridIter<'a, T: Idx> {
    Sparse(SparseIter<'a, T>),
    Dense(Iter<'a, T>),
}

impl<'a, T: Idx> Iterator for HybridIter<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        match self {
            HybridIter::Sparse(sparse) => sparse.next(),
            HybridIter::Dense(dense) => dense.next(),
        }
    }
}

#[test]
fn test_trim_to() {
    use std::cmp;

    for i in 0..256 {
        let mut idx_buf: IdxSet<usize> = IdxSet::new_filled(128);
        idx_buf.trim_to(i);

        let elems: Vec<usize> = idx_buf.iter().collect();
        let expected: Vec<usize> = (0..cmp::min(i, 128)).collect();
        assert_eq!(elems, expected);
    }
}

#[test]
fn test_set_up_to() {
    for i in 0..128 {
        for mut idx_buf in
            vec![IdxSet::new_empty(128), IdxSet::new_filled(128)]
            .into_iter()
        {
            idx_buf.set_up_to(i);

            let elems: Vec<usize> = idx_buf.iter().collect();
            let expected: Vec<usize> = (0..i).collect();
            assert_eq!(elems, expected);
        }
    }
}

#[test]
fn test_new_filled() {
    for i in 0..128 {
        let idx_buf = IdxSet::new_filled(i);
        let elems: Vec<usize> = idx_buf.iter().collect();
        let expected: Vec<usize> = (0..i).collect();
        assert_eq!(elems, expected);
    }
}