rust_transformers/preprocessing/tokenizer/
openai_gpt_tokenizer.rs

1// Copyright 2018 The Open AI Team Authors
2// Copyright 2018 The HuggingFace Inc. team.
3// Copyright 2019 Guillaume Becquin
4// Licensed under the Apache License, Version 2.0 (the "License");
5// you may not use this file except in compliance with the License.
6// You may obtain a copy of the License at
7//     http://www.apache.org/licenses/LICENSE-2.0
8// Unless required by applicable law or agreed to in writing, software
9// distributed under the License is distributed on an "AS IS" BASIS,
10// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11// See the License for the specific language governing permissions and
12// limitations under the License.
13
14use crate::OpenAiGptVocab;
15use crate::preprocessing::vocab::base_vocab::Vocab;
16use crate::preprocessing::tokenizer::base_tokenizer::{Tokenizer, BaseTokenizer};
17use std::collections::HashMap;
18use crate::preprocessing::tokenizer::tokenization_utils::{split_on_special_tokens, openai_gpt_bpe};
19use std::rc::Rc;
20use std::cell::RefCell;
21use crate::preprocessing::vocab::bpe_vocab::BpePairVocab;
22use std::sync::Arc;
23
24pub struct OpenAiGptTokenizer {
25    vocab: Arc<OpenAiGptVocab>,
26    base_tokenizer: BaseTokenizer<OpenAiGptVocab>,
27    bpe_ranks: Rc<BpePairVocab>,
28    cache: RefCell<HashMap<String, Vec<String>>>,
29}
30
31impl OpenAiGptTokenizer {
32    pub fn from_file(vocab_path: &str, merges_path: &str) -> OpenAiGptTokenizer {
33        let vocab = Arc::new(OpenAiGptVocab::from_file(vocab_path));
34        let base_tokenizer = BaseTokenizer::from_existing_vocab(vocab.clone());
35        let bpe_ranks = Rc::new(BpePairVocab::from_file(merges_path));
36        let cache = RefCell::new(HashMap::new());
37        OpenAiGptTokenizer { vocab, base_tokenizer, bpe_ranks, cache}
38    }
39
40    pub fn from_existing_vocab_and_merges(vocab: Arc<OpenAiGptVocab>, merges: Rc<BpePairVocab>) -> OpenAiGptTokenizer {
41        let base_tokenizer = BaseTokenizer::from_existing_vocab(vocab.clone());
42        let cache = RefCell::new(HashMap::new());
43        OpenAiGptTokenizer { vocab, base_tokenizer, bpe_ranks: merges, cache}
44    }
45}
46
47impl Tokenizer<OpenAiGptVocab> for OpenAiGptTokenizer {
48    fn vocab(&self) -> &OpenAiGptVocab {
49        &self.vocab
50    }
51
52    fn tokenize(&self, text: &str) -> Vec<String> {
53        let mut tokenized_text: Vec<String> = Vec::with_capacity(text.len());
54
55        let temp_text = split_on_special_tokens(text, self.vocab.as_ref());
56
57        for text in temp_text {
58            if !self.vocab.special_values.contains_key(text) {
59                let sub_words: Vec<String> = self.base_tokenizer.tokenize(text);
60
61                for word in sub_words {
62                    let cached: bool = match self.cache.borrow().get(&word) {
63                        Some(value) => {
64                            tokenized_text.extend(value.clone());
65                            true
66                        }
67                        None => false
68                    };
69                    if !cached {
70                        let bpe_output = openai_gpt_bpe(&word, &self.bpe_ranks);
71                        self.cache.borrow_mut().insert(word.to_owned(), bpe_output.clone());
72                        tokenized_text.extend(bpe_output);
73                    }
74                };
75            } else {
76                tokenized_text.push(text.to_owned());
77            }
78        }
79        tokenized_text
80    }
81}
82
83#[cfg(test)]
84mod tests {
85    use super::*;
86    use crate::OpenAiGptVocab;
87    use std::collections::HashMap;
88    use crate::preprocessing::tokenizer::base_tokenizer::{TruncationStrategy, TokenizedInput};
89    use crate::preprocessing::vocab::base_vocab::swap_key_values;
90
91    fn generate_test_vocab() -> OpenAiGptVocab {
92        let values: HashMap<String, i64> = [
93            ("t".to_owned(), 0),
94            ("h".to_owned(), 1),
95            ("a</w>".to_owned(), 2),
96            ("n".to_owned(), 3),
97            ("the".to_owned(), 4),
98            ("Ġ".to_owned(), 5),
99            ("<unk>".to_owned(), 6),
100            ("o</w>".to_owned(), 7)
101        ].iter().cloned().collect();
102
103        let special_values: HashMap<String, i64> = [
104            ("<unk>".to_owned(), 6),
105        ].iter().cloned().collect();
106
107        let indices = swap_key_values(&values);
108        let special_indices = swap_key_values(&special_values);
109
110        OpenAiGptVocab { values, indices, unknown_value: "<unk>", special_values, special_indices }
111    }
112
113    fn generate_test_merges() -> BpePairVocab {
114        let values: HashMap<(String, String), i64> = [
115            (("4".to_owned(), "t".to_owned()), 0),
116            (("2".to_owned(), "n".to_owned()), 1),
117            (("r".to_owned(), "th</w>".to_owned()), 2),
118            (("t".to_owned(), "he</w>".to_owned()), 3),
119            (("h".to_owned(), "e".to_owned()), 4),
120            (("t".to_owned(), "h</w>".to_owned()), 5),
121            (("t".to_owned(), "h".to_owned()), 6),
122        ].iter().cloned().collect();
123
124
125        BpePairVocab { values }
126    }
127
128    #[test]
129    fn test_openai_gpt_tokenizer() {
130//        Given
131        let vocab = Arc::new(generate_test_vocab());
132        let merges = Rc::new(generate_test_merges());
133        let openai_gpt_tokenizer: OpenAiGptTokenizer = OpenAiGptTokenizer::from_existing_vocab_and_merges(vocab, merges);
134        let test_tuples = [
135            (
136                "the earth",
137                vec!("th", "e</w>", "e", "a", "rth</w>")
138            ),
139            (
140                "",
141                vec!()
142            ),
143            (
144                " ",
145                vec!("<unk>")
146            ),
147            (
148                " \n ",
149                vec!("<unk>")
150            ),
151        ];
152        let source_texts: Vec<&str> = test_tuples.iter().map(|v| v.0).collect();
153        let expected_results: Vec<Vec<&str>> = test_tuples.iter().map(|v| v.1.clone()).collect();
154
155//        When & Then
156        for (source_text, expected_result) in test_tuples.iter() {
157            assert_eq!(openai_gpt_tokenizer.tokenize(*source_text), *expected_result);
158        }
159
160        assert_eq!(openai_gpt_tokenizer.tokenize_list(source_texts.clone()), expected_results);
161    }
162
163
164    #[test]
165    fn test_encode() {
166//        Given
167        let vocab = Arc::new(generate_test_vocab());
168        let merges = Rc::new(generate_test_merges());
169        let openai_gpt_tokenizer: OpenAiGptTokenizer = OpenAiGptTokenizer::from_existing_vocab_and_merges(vocab, merges);
170        let truncation_strategy = TruncationStrategy::LongestFirst;
171        let test_tuples = [
172            (
173                "the earth",
174                TokenizedInput { token_ids: vec!(6, 6, 6, 6, 6), segment_ids: vec!(0, 0, 0, 0, 0), special_tokens_mask: vec!(0, 0, 0, 0, 0), overflowing_tokens: vec!(), num_truncated_tokens: 0 }
175            ),
176            (
177                " ",
178                TokenizedInput { token_ids: vec!(6), segment_ids: vec!(0), special_tokens_mask: vec!(0), overflowing_tokens: vec!(), num_truncated_tokens: 0 }
179            ),
180            (
181                "",
182                TokenizedInput { token_ids: vec!(), segment_ids: vec!(), special_tokens_mask: vec!(), overflowing_tokens: vec!(), num_truncated_tokens: 0 }
183            )
184        ];
185        let source_texts: Vec<&str> = test_tuples.iter().map(|v| v.0).collect();
186        let expected_results: Vec<TokenizedInput> = test_tuples.iter().map(|v| v.1.clone()).collect();
187
188//        When & Then
189        for (source_text, expected_result) in test_tuples.iter() {
190            assert_eq!(openai_gpt_tokenizer.encode(source_text, None, 128, &truncation_strategy, 0),
191                       *expected_result);
192        }
193        assert_eq!(openai_gpt_tokenizer.encode_list(source_texts.clone(), 128, &truncation_strategy, 0), expected_results);
194    }
195}