1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
use core::convert::TryFrom;
use core::ops::Range;
use libipld::Cid;
use crate::file::reader::{FileContent, FileReader, Traversal};
use crate::file::{FileReadFailed, Metadata};
use crate::pb::{merkledag::PBLink, FlatUnixFs};
use crate::InvalidCidInLink;
/// IdleFileVisit represents a prepared file visit over a tree. The user has to know the CID and be
/// able to get the block for the visit.
///
/// **Note**: For easier to use interface, you should consider using `ipfs_unixfs::walk::Walker`.
/// It uses `IdleFileVisit` and `FileVisit` internally but has a better API.
#[derive(Default, Debug)]
pub struct IdleFileVisit {
range: Option<Range<u64>>,
}
type FileVisitResult<'a> = (&'a [u8], u64, Metadata, Option<FileVisit>);
impl IdleFileVisit {
/// Target range represents the target byte range of the file we are interested in visiting.
pub fn with_target_range(self, range: Range<u64>) -> Self {
Self { range: Some(range) }
}
/// Begins the visitation by processing the first block to be visited.
///
/// Returns (on success) a tuple of file bytes, total file size, any metadata associated, and
/// optionally a `FileVisit` to continue the walk.
pub fn start(self, block: &'_ [u8]) -> Result<FileVisitResult<'_>, FileReadFailed> {
let fr = FileReader::from_block(block)?;
self.start_from_reader(fr, &mut None)
}
pub(crate) fn start_from_parsed<'a>(
self,
block: FlatUnixFs<'a>,
cache: &'_ mut Option<Cache>,
) -> Result<FileVisitResult<'a>, FileReadFailed> {
let fr = FileReader::from_parsed(block)?;
self.start_from_reader(fr, cache)
}
fn start_from_reader<'a>(
self,
fr: FileReader<'a>,
cache: &'_ mut Option<Cache>,
) -> Result<FileVisitResult<'a>, FileReadFailed> {
let metadata = fr.as_ref().to_owned();
let (content, traversal) = fr.content();
match content {
FileContent::Bytes(content) => {
let block = 0..content.len() as u64;
let content = maybe_target_slice(content, &block, self.range.as_ref());
Ok((content, traversal.file_size(), metadata, None))
}
FileContent::Links(iter) => {
// we need to select suitable here
let mut links = cache.take().unwrap_or_default().inner;
let pending = iter.enumerate().filter_map(|(i, (link, range))| {
if !block_is_in_target_range(&range, self.range.as_ref()) {
return None;
}
Some(to_pending(i, link, range))
});
for item in pending {
links.push(item?);
}
// order is reversed to consume them in the depth first order
links.reverse();
if links.is_empty() {
*cache = Some(links.into());
Ok((&[][..], traversal.file_size(), metadata, None))
} else {
Ok((
&[][..],
traversal.file_size(),
metadata,
Some(FileVisit {
pending: links,
state: traversal,
range: self.range,
}),
))
}
}
}
}
}
/// Optional cache for datastructures which can be re-used without re-allocation between walks of
/// different files.
#[derive(Default)]
pub struct Cache {
inner: Vec<(Cid, Range<u64>)>,
}
impl From<Vec<(Cid, Range<u64>)>> for Cache {
fn from(mut inner: Vec<(Cid, Range<u64>)>) -> Self {
inner.clear();
Cache { inner }
}
}
/// FileVisit represents an ongoing visitation over an UnixFs File tree.
///
/// The file visitor does **not** implement size validation of merkledag links at the moment. This
/// could be implmented with generational storage and it would require an u64 per link.
///
/// **Note**: For easier to use interface, you should consider using `ipfs_unixfs::walk::Walker`.
/// It uses `IdleFileVisit` and `FileVisit` internally but has a better API.
#[derive(Debug)]
pub struct FileVisit {
/// The internal cache for pending work. Order is such that the next is always the last item,
/// so it can be popped. This currently does use a lot of memory for very large files.
///
/// One workaround would be to transform excess links to relative links to some block of a Cid.
pending: Vec<(Cid, Range<u64>)>,
/// Target range, if any. Used to filter the links so that we will only visit interesting
/// parts.
range: Option<Range<u64>>,
state: Traversal,
}
impl FileVisit {
/// Access hashes of all pending links for prefetching purposes. The block for the first item
/// returned by this method is the one which needs to be processed next with `continue_walk`.
///
/// Returns tuple of the next Cid which needs to be processed and an iterator over the
/// remaining.
pub fn pending_links(&self) -> (&Cid, impl Iterator<Item = &Cid>) {
let mut iter = self.pending.iter().rev().map(|(link, _)| link);
let first = iter
.next()
.expect("the presence of links has been validated");
(first, iter)
}
/// Continues the walk with the data for the first `pending_link` key.
///
/// Returns on success a tuple of bytes and new version of `FileVisit` to continue the visit,
/// when there is something more to visit.
pub fn continue_walk<'a>(
mut self,
next: &'a [u8],
cache: &mut Option<Cache>,
) -> Result<(&'a [u8], Option<Self>), FileReadFailed> {
let traversal = self.state;
let (_, range) = self
.pending
.pop()
.expect("User called continue_walk there must have been a next link");
// interesting, validation doesn't trigger if the range is the same?
let fr = traversal.continue_walk(next, &range)?;
let (content, traversal) = fr.content();
match content {
FileContent::Bytes(content) => {
let content = maybe_target_slice(content, &range, self.range.as_ref());
if !self.pending.is_empty() {
self.state = traversal;
Ok((content, Some(self)))
} else {
*cache = Some(self.pending.into());
Ok((content, None))
}
}
FileContent::Links(iter) => {
let before = self.pending.len();
for (i, (link, range)) in iter.enumerate() {
if !block_is_in_target_range(&range, self.range.as_ref()) {
continue;
}
self.pending.push(to_pending(i, link, range)?);
}
// reverse to keep the next link we need to traverse as last, where pop() operates.
self.pending[before..].reverse();
self.state = traversal;
Ok((&[][..], Some(self)))
}
}
}
/// Returns the total size of the file in bytes.
pub fn file_size(&self) -> u64 {
self.state.file_size()
}
}
impl AsRef<Metadata> for FileVisit {
fn as_ref(&self) -> &Metadata {
self.state.as_ref()
}
}
fn to_pending(
nth: usize,
link: PBLink<'_>,
range: Range<u64>,
) -> Result<(Cid, Range<u64>), FileReadFailed> {
let hash = link.Hash.as_deref().unwrap_or_default();
match Cid::try_from(hash) {
Ok(cid) => Ok((cid, range)),
Err(e) => Err(FileReadFailed::InvalidCid(InvalidCidInLink::from((
nth, link, e,
)))),
}
}
/// Returns true if the blocks byte offsets are interesting for our target range, false otherwise.
/// If there is no target, all blocks are of interest.
fn block_is_in_target_range(block: &Range<u64>, target: Option<&Range<u64>>) -> bool {
use core::cmp::{max, min};
if let Some(target) = target {
max(block.start, target.start) <= min(block.end, target.end)
} else {
true
}
}
/// Whenever we propagate the content from the tree upwards, we need to make sure it's inside the
/// range we were originally interested in.
fn maybe_target_slice<'a>(
content: &'a [u8],
block: &Range<u64>,
target: Option<&Range<u64>>,
) -> &'a [u8] {
if let Some(target) = target {
target_slice(content, block, target)
} else {
content
}
}
fn target_slice<'a>(content: &'a [u8], block: &Range<u64>, target: &Range<u64>) -> &'a [u8] {
use core::cmp::min;
if !block_is_in_target_range(block, Some(target)) {
// defaulting to empty slice is good, and similar to the "cat" HTTP API operation.
&[][..]
} else {
let start;
let end;
// FIXME: these must have bugs and must be possible to simplify
if target.start < block.start {
// we mostly need something before
start = 0;
end = (min(target.end, block.end) - block.start) as usize;
} else if target.end > block.end {
// we mostly need something after
start = (target.start - block.start) as usize;
end = (min(target.end, block.end) - block.start) as usize;
} else {
// inside
start = (target.start - block.start) as usize;
end = start + (target.end - target.start) as usize;
}
&content[start..end]
}
}
#[cfg(test)]
mod tests {
use super::target_slice;
#[test]
#[allow(clippy::type_complexity)]
fn slice_for_target() {
use core::ops::Range;
// turns out these examples are not easy to determine at all
// writing out the type here avoids &b""[..] inside the array.
let cases: &[(&[u8], u64, Range<u64>, &[u8])] = &[
// xxxx xxxx cont ent_
// ^^^^ ^^^^
(b"content_", 8, 0..8, b""),
// xxxx xxxx cont ent_
// ^^^^ ^^^^ ^
(b"content_", 8, 0..9, b"c"),
// xxxx xxxx cont ent_
// ^^^ ^^^^ ^^^^ ^^^^ ...
(b"content_", 8, 1..20, b"content_"),
// xxxx xxxx cont ent_
// ^ ^^^^ ^^^^ ...
(b"content_", 8, 7..20, b"content_"),
// xxxx xxxx cont ent_
// ^^^^ ^^^^ ...
(b"content_", 8, 8..20, b"content_"),
// xxxx xxxx cont ent_
// ^^^ ^^^^ ...
(b"content_", 8, 9..20, b"ontent_"),
// xxxx xxxx cont ent_
// ^ ...
(b"content_", 8, 15..20, b"_"),
// xxxx xxxx cont ent_ yyyy
// ^^^^
(b"content_", 8, 16..20, b""),
];
for (block_data, block_offset, target_range, expected) in cases {
let block_range = *block_offset..(block_offset + block_data.len() as u64);
let sliced = target_slice(block_data, &block_range, target_range);
assert_eq!(
sliced, *expected,
"slice {target_range:?} of block {block_range:?}"
);
}
}
}