1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
use super::{
CustomFlatUnixFs, DirBuilder, Entry, Leaf, NamedLeaf, TreeConstructionFailed, TreeOptions,
};
use core::fmt;
use libipld::multihash::{Code, Multihash};
use libipld::Cid;
use std::collections::HashMap;
/// Constructs the directory nodes required for a tree.
///
/// Implements the Iterator interface for owned values and the borrowed version, `next_borrowed`.
/// The tree is fully constructed once this has been exhausted.
pub struct PostOrderIterator {
full_path: String,
old_depth: usize,
block_buffer: Vec<u8>,
// our stack of pending work
pending: Vec<Visited>,
// "communication channel" from nested entries back to their parents; this hashmap is only used
// in the event of mixed child nodes (leaves and nodes).
persisted_cids: HashMap<u64, Vec<Option<NamedLeaf>>>,
reused_children: Vec<Visited>,
cid: Option<Cid>,
total_size: u64,
// from TreeOptions
opts: TreeOptions,
}
/// The link list used to create the directory node. This list is created from a the BTreeMap
/// inside DirBuilder, and initially it will have `Some` values only for the initial leaves and
/// `None` values for subnodes which are not yet ready. At the time of use, this list is expected
/// to have only `Some` values.
type Leaves = Vec<Option<NamedLeaf>>;
/// The nodes in the visit. We need to do a post-order visit, which starts from a single
/// `DescentRoot`, followed by N `Descents` where N is the deepest directory in the tree. On each
/// descent, we'll need to first schedule a `Post` (or `PostRoot`) followed the immediate children
/// of the node. Directories are rendered when all of their direct and indirect descendants have
/// been serialized into NamedLeafs.
#[derive(Debug)]
enum Visited {
// handle root differently not to infect with the Option<String> and Option<usize>
DescentRoot(DirBuilder),
Descent {
node: DirBuilder,
name: String,
depth: usize,
/// The index in the parents `Leaves` accessible through `PostOrderIterator::persisted_cids`.
index: usize,
},
Post {
parent_id: u64,
depth: usize,
name: String,
index: usize,
/// Leaves will be stored directly in this field when there are no DirBuilder descendants,
/// in the `PostOrderIterator::persisted_cids` otherwise.
leaves: LeafStorage,
},
PostRoot {
leaves: LeafStorage,
},
}
impl PostOrderIterator {
pub(super) fn new(root: DirBuilder, opts: TreeOptions, longest_path: usize) -> Self {
let root = Visited::DescentRoot(root);
PostOrderIterator {
full_path: String::with_capacity(longest_path),
old_depth: 0,
block_buffer: Default::default(),
pending: vec![root],
persisted_cids: Default::default(),
reused_children: Vec::new(),
cid: None,
total_size: 0,
opts,
}
}
fn render_directory(
links: &[Option<NamedLeaf>],
buffer: &mut Vec<u8>,
block_size_limit: &Option<u64>,
) -> Result<Leaf, TreeConstructionFailed> {
use crate::pb::{UnixFs, UnixFsType};
use quick_protobuf::{BytesWriter, MessageWrite, Writer};
use sha2::{Digest, Sha256};
// FIXME: ideas on how to turn this into a HAMT sharding on some heuristic. we probably
// need to introduce states in to the "iterator":
//
// 1. bucketization
// 2. another post order visit of the buckets?
//
// the nested post order visit should probably re-use the existing infra ("message
// passing") and new ids can be generated by giving this iterator the counter from
// BufferedTreeBuilder.
//
// could also be that the HAMT shard building should start earlier, since the same
// heuristic can be detected *at* bufferedtreewriter. there the split would be easier, and
// this would "just" be a single node rendering, and not need any additional states..
let node = CustomFlatUnixFs {
links,
data: UnixFs {
Type: UnixFsType::Directory,
..Default::default()
},
};
let size = node.get_size();
if let Some(limit) = block_size_limit {
let size = size as u64;
if *limit < size {
// FIXME: this could probably be detected at builder
return Err(TreeConstructionFailed::TooLargeBlock(size));
}
}
let cap = buffer.capacity();
if let Some(additional) = size.checked_sub(cap) {
buffer.reserve(additional);
}
if let Some(mut needed_zeroes) = size.checked_sub(buffer.len()) {
let zeroes = [0; 8];
while needed_zeroes > 8 {
buffer.extend_from_slice(&zeroes[..]);
needed_zeroes -= zeroes.len();
}
buffer.extend(core::iter::repeat(0).take(needed_zeroes));
}
let mut writer = Writer::new(BytesWriter::new(&mut buffer[..]));
node.write_message(&mut writer)
.map_err(TreeConstructionFailed::Protobuf)?;
buffer.truncate(size);
let mh = Multihash::wrap(Code::Sha2_256.into(), &Sha256::digest(&buffer)).unwrap();
let cid = Cid::new_v0(mh).expect("sha2_256 is the correct multihash for cidv0");
let combined_from_links = links
.iter()
.map(|opt| {
opt.as_ref()
.map(|NamedLeaf(_, _, total_size)| total_size)
.unwrap()
})
.sum::<u64>();
Ok(Leaf {
link: cid,
total_size: buffer.len() as u64 + combined_from_links,
})
}
/// Construct the next dag-pb node, if any.
///
/// Returns a `TreeNode` of the latest constructed tree node.
pub fn next_borrowed(&mut self) -> Option<Result<TreeNode<'_>, TreeConstructionFailed>> {
while let Some(visited) = self.pending.pop() {
let (name, depth) = match &visited {
Visited::DescentRoot(_) => (None, 0),
Visited::Descent { name, depth, .. } => (Some(name.as_ref()), *depth),
Visited::Post { name, depth, .. } => (Some(name.as_ref()), *depth),
Visited::PostRoot { .. } => (None, 0),
};
update_full_path((&mut self.full_path, &mut self.old_depth), name, depth);
match visited {
Visited::DescentRoot(node) => {
let children = &mut self.reused_children;
let leaves = partition_children_leaves(depth, node.nodes.into_iter(), children);
let any_children = !children.is_empty();
let leaves = if any_children {
self.persisted_cids.insert(node.id, leaves);
LeafStorage::from(node.id)
} else {
leaves.into()
};
self.pending.push(Visited::PostRoot { leaves });
self.pending.append(children);
}
Visited::Descent {
node,
name,
depth,
index,
} => {
let children = &mut self.reused_children;
let leaves = partition_children_leaves(depth, node.nodes.into_iter(), children);
let any_children = !children.is_empty();
let parent_id = node.parent_id.expect("only roots parent_id is None");
let leaves = if any_children {
self.persisted_cids.insert(node.id, leaves);
node.id.into()
} else {
leaves.into()
};
self.pending.push(Visited::Post {
parent_id,
name,
depth,
leaves,
index,
});
self.pending.append(children);
}
Visited::Post {
parent_id,
name,
leaves,
index,
..
} => {
let leaves = leaves.into_inner(&mut self.persisted_cids);
let buffer = &mut self.block_buffer;
let leaf = match Self::render_directory(
&leaves,
buffer,
&self.opts.block_size_limit,
) {
Ok(leaf) => leaf,
Err(e) => return Some(Err(e)),
};
self.cid = Some(leaf.link);
self.total_size = leaf.total_size;
{
// name is None only for wrap_with_directory, which cannot really be
// propagated up but still the parent_id is allowed to be None
let parent_leaves = self.persisted_cids.get_mut(&parent_id);
match (parent_id, parent_leaves, index) {
(pid, None, index) => {
panic!("leaves not found for parent_id = {pid} and index = {index}")
}
(_, Some(vec), index) => {
let cell = &mut vec[index];
// all
assert!(cell.is_none());
*cell = Some(NamedLeaf(name, leaf.link, leaf.total_size));
}
}
}
return Some(Ok(TreeNode {
path: self.full_path.as_str(),
cid: self.cid.as_ref().unwrap(),
total_size: self.total_size,
block: &self.block_buffer,
}));
}
Visited::PostRoot { leaves } => {
let leaves = leaves.into_inner(&mut self.persisted_cids);
if !self.opts.wrap_with_directory {
break;
}
let buffer = &mut self.block_buffer;
let leaf = match Self::render_directory(
&leaves,
buffer,
&self.opts.block_size_limit,
) {
Ok(leaf) => leaf,
Err(e) => return Some(Err(e)),
};
self.cid = Some(leaf.link);
self.total_size = leaf.total_size;
return Some(Ok(TreeNode {
path: self.full_path.as_str(),
cid: self.cid.as_ref().unwrap(),
total_size: self.total_size,
block: &self.block_buffer,
}));
}
}
}
None
}
}
impl Iterator for PostOrderIterator {
type Item = Result<OwnedTreeNode, TreeConstructionFailed>;
fn next(&mut self) -> Option<Self::Item> {
self.next_borrowed()
.map(|res| res.map(TreeNode::into_owned))
}
}
/// Borrowed representation of a node in the tree.
pub struct TreeNode<'a> {
/// Full path to the node.
pub path: &'a str,
/// The Cid of the document.
pub cid: &'a Cid,
/// Cumulative total size of the subtree in bytes.
pub total_size: u64,
/// Raw dag-pb document.
pub block: &'a [u8],
}
impl<'a> fmt::Debug for TreeNode<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("TreeNode")
.field("path", &format_args!("{:?}", self.path))
.field("cid", &format_args!("{}", self.cid))
.field("total_size", &self.total_size)
.field("size", &self.block.len())
.finish()
}
}
impl TreeNode<'_> {
/// Convert to an owned and detached representation.
pub fn into_owned(self) -> OwnedTreeNode {
OwnedTreeNode {
path: self.path.to_owned(),
cid: self.cid.to_owned(),
total_size: self.total_size,
block: self.block.into(),
}
}
}
/// Owned representation of a node in the tree.
pub struct OwnedTreeNode {
/// Full path to the node.
pub path: String,
/// The Cid of the document.
pub cid: Cid,
/// Cumulative total size of the subtree in bytes.
pub total_size: u64,
/// Raw dag-pb document.
pub block: Box<[u8]>,
}
fn update_full_path(
(full_path, old_depth): (&mut String, &mut usize),
name: Option<&str>,
depth: usize,
) {
if depth < 2 {
// initially thought it might be a good idea to add a slash to all components; removing it made
// it impossible to get back down to empty string, so fixing this for depths 0 and 1.
full_path.clear();
*old_depth = 0;
} else {
while *old_depth >= depth && *old_depth > 0 {
// we now want to pop the last segment
// this would be easier with PathBuf
let slash_at = full_path.bytes().rposition(|ch| ch == b'/');
if let Some(slash_at) = slash_at {
if *old_depth == depth && Some(&full_path[(slash_at + 1)..]) == name {
// minor unmeasurable perf optimization:
// going from a/b/foo/zz => a/b/foo does not need to go through the a/b
return;
}
full_path.truncate(slash_at);
*old_depth -= 1;
} else {
todo!(
"no last slash_at in {:?} yet {} >= {}",
full_path,
old_depth,
depth
);
}
}
}
debug_assert!(*old_depth <= depth);
if let Some(name) = name {
if !full_path.is_empty() {
full_path.push('/');
}
full_path.push_str(name);
*old_depth += 1;
}
assert_eq!(*old_depth, depth);
}
/// Returns a Vec of the links in order with only the leaves, the given `children` will contain yet
/// incomplete nodes of the tree.
fn partition_children_leaves(
depth: usize,
it: impl Iterator<Item = (String, Entry)>,
children: &mut Vec<Visited>,
) -> Leaves {
let mut leaves = Vec::new();
for (i, (k, v)) in it.enumerate() {
match v {
Entry::Directory(node) => {
children.push(Visited::Descent {
node,
// this needs to be pushed down to update the full_path
name: k,
depth: depth + 1,
index: i,
});
// this will be overwritten later, but the order is fixed
leaves.push(None);
}
Entry::Leaf(leaf) => leaves.push(Some(NamedLeaf(k, leaf.link, leaf.total_size))),
}
}
leaves
}
#[derive(Debug)]
enum LeafStorage {
Direct(Leaves),
Stashed(u64),
}
impl LeafStorage {
fn into_inner(self, stash: &mut HashMap<u64, Leaves>) -> Leaves {
use LeafStorage::*;
match self {
Direct(leaves) => leaves,
Stashed(id) => stash
.remove(&id)
.ok_or(id)
.expect("leaves are either stashed or direct, must able to find with id"),
}
}
}
impl From<u64> for LeafStorage {
fn from(key: u64) -> LeafStorage {
LeafStorage::Stashed(key)
}
}
impl From<Leaves> for LeafStorage {
fn from(leaves: Leaves) -> LeafStorage {
LeafStorage::Direct(leaves)
}
}