rust_rule_engine/rete/
grl_loader.rs

1//! GRL to RETE Converter
2//!
3//! This module converts GRL (Grule Rule Language) rules into RETE-UL structures
4//! for efficient pattern matching and rule execution.
5
6use crate::engine::rule::{Condition, ConditionGroup, Rule};
7use crate::parser::GRLParser;
8use crate::rete::{AlphaNode, ReteUlNode, TypedReteUlRule};
9use crate::rete::facts::{TypedFacts, FactValue};
10use crate::rete::propagation::IncrementalEngine;
11use crate::types::{Operator, Value};
12use crate::errors::{Result, RuleEngineError};
13use std::fs;
14use std::path::Path;
15
16/// GRL to RETE Loader
17/// Converts GRL rules into RETE-UL structures
18pub struct GrlReteLoader;
19
20impl GrlReteLoader {
21    /// Load rules from a GRL file into RETE engine
22    pub fn load_from_file<P: AsRef<Path>>(
23        path: P,
24        engine: &mut IncrementalEngine,
25    ) -> Result<usize> {
26        let grl_text = fs::read_to_string(path.as_ref()).map_err(|e| {
27            RuleEngineError::ParseError {
28                message: format!("Failed to read GRL file: {}", e),
29            }
30        })?;
31
32        Self::load_from_string(&grl_text, engine)
33    }
34
35    /// Load rules from GRL string into RETE engine
36    pub fn load_from_string(
37        grl_text: &str,
38        engine: &mut IncrementalEngine,
39    ) -> Result<usize> {
40        // Parse GRL rules
41        let rules = GRLParser::parse_rules(grl_text)?;
42
43        let mut loaded_count = 0;
44
45        for rule in rules {
46            // Convert GRL rule to RETE rule
47            let rete_rule = Self::convert_rule_to_rete(rule)?;
48
49            // Extract dependencies (fact types used in conditions)
50            let dependencies = Self::extract_dependencies(&rete_rule);
51
52            // Add to engine
53            engine.add_rule(rete_rule, dependencies);
54            loaded_count += 1;
55        }
56
57        Ok(loaded_count)
58    }
59
60    /// Convert GRL Rule to TypedReteUlRule
61    fn convert_rule_to_rete(rule: Rule) -> Result<TypedReteUlRule> {
62        // Convert ConditionGroup to ReteUlNode
63        let node = Self::convert_condition_group(&rule.conditions)?;
64
65        // Create RETE rule
66        let rete_rule = TypedReteUlRule {
67            name: rule.name.clone(),
68            node,
69            priority: rule.salience,
70            no_loop: rule.no_loop,
71            action: Self::create_action_closure(rule.actions),
72        };
73
74        Ok(rete_rule)
75    }
76
77    /// Convert ConditionGroup to ReteUlNode
78    fn convert_condition_group(group: &ConditionGroup) -> Result<ReteUlNode> {
79        match group {
80            ConditionGroup::Single(condition) => {
81                Self::convert_condition(condition)
82            }
83            ConditionGroup::Compound { left, operator, right } => {
84                let left_node = Self::convert_condition_group(left)?;
85                let right_node = Self::convert_condition_group(right)?;
86
87                match operator {
88                    crate::types::LogicalOperator::And => {
89                        Ok(ReteUlNode::UlAnd(Box::new(left_node), Box::new(right_node)))
90                    }
91                    crate::types::LogicalOperator::Or => {
92                        Ok(ReteUlNode::UlOr(Box::new(left_node), Box::new(right_node)))
93                    }
94                    crate::types::LogicalOperator::Not => {
95                        // For NOT, we only use left node
96                        Ok(ReteUlNode::UlNot(Box::new(left_node)))
97                    }
98                }
99            }
100            ConditionGroup::Not(inner) => {
101                let inner_node = Self::convert_condition_group(inner)?;
102                Ok(ReteUlNode::UlNot(Box::new(inner_node)))
103            }
104            ConditionGroup::Exists(inner) => {
105                let inner_node = Self::convert_condition_group(inner)?;
106                Ok(ReteUlNode::UlExists(Box::new(inner_node)))
107            }
108            ConditionGroup::Forall(inner) => {
109                let inner_node = Self::convert_condition_group(inner)?;
110                Ok(ReteUlNode::UlForall(Box::new(inner_node)))
111            }
112        }
113    }
114
115    /// Convert single Condition to ReteUlNode (AlphaNode)
116    fn convert_condition(condition: &Condition) -> Result<ReteUlNode> {
117        let operator_str = Self::operator_to_string(&condition.operator);
118        let value_str = Self::value_to_string(&condition.value);
119
120        let alpha = AlphaNode {
121            field: condition.field.clone(),
122            operator: operator_str,
123            value: value_str,
124        };
125
126        Ok(ReteUlNode::UlAlpha(alpha))
127    }
128
129    /// Convert Operator to string
130    fn operator_to_string(op: &Operator) -> String {
131        match op {
132            Operator::Equal => "==".to_string(),
133            Operator::NotEqual => "!=".to_string(),
134            Operator::GreaterThan => ">".to_string(),
135            Operator::GreaterThanOrEqual => ">=".to_string(),
136            Operator::LessThan => "<".to_string(),
137            Operator::LessThanOrEqual => "<=".to_string(),
138            Operator::Contains => "contains".to_string(),
139            Operator::NotContains => "!contains".to_string(),
140            Operator::StartsWith => "startsWith".to_string(),
141            Operator::EndsWith => "endsWith".to_string(),
142            Operator::Matches => "matches".to_string(),
143        }
144    }
145
146    /// Convert Value to string for AlphaNode
147    fn value_to_string(value: &Value) -> String {
148        match value {
149            Value::Number(n) => n.to_string(),
150            Value::Integer(i) => i.to_string(),
151            Value::String(s) => s.clone(),
152            Value::Boolean(b) => b.to_string(),
153            Value::Null => "null".to_string(),
154            Value::Array(arr) => {
155                // Convert array to JSON-like string
156                let items: Vec<String> = arr.iter()
157                    .map(|v| Self::value_to_string(v))
158                    .collect();
159                format!("[{}]", items.join(","))
160            }
161            Value::Object(_) => {
162                // For objects, we'll use a simplified representation
163                "object".to_string()
164            }
165        }
166    }
167
168    /// Create action closure from ActionType list
169    fn create_action_closure(
170        actions: Vec<crate::types::ActionType>,
171    ) -> Box<dyn FnMut(&mut TypedFacts)> {
172        Box::new(move |facts: &mut TypedFacts| {
173            // Execute actions
174            for action in &actions {
175                Self::execute_action(action, facts);
176            }
177        })
178    }
179
180    /// Execute a single action
181    fn execute_action(action: &crate::types::ActionType, facts: &mut TypedFacts) {
182        use crate::types::ActionType;
183
184        match action {
185            ActionType::Set { field, value } => {
186                // Convert Value to FactValue
187                let fact_value = Self::value_to_fact_value(value);
188                facts.set(field, fact_value);
189            }
190            ActionType::Log { message } => {
191                println!("📝 LOG: {}", message);
192            }
193            ActionType::Call { function, args: _ } => {
194                // For function calls, we'll just log them
195                println!("🔧 CALL: {}", function);
196            }
197            ActionType::MethodCall { object, method, args: _ } => {
198                println!("📞 METHOD: {}.{}", object, method);
199            }
200            ActionType::Update { object } => {
201                println!("🔄 UPDATE: {}", object);
202            }
203            ActionType::Custom { action_type, params: _ } => {
204                println!("⚙️ CUSTOM: {}", action_type);
205            }
206            ActionType::ActivateAgendaGroup { group } => {
207                println!("📋 ACTIVATE GROUP: {}", group);
208            }
209            ActionType::ScheduleRule { rule_name, delay_ms } => {
210                println!("⏰ SCHEDULE: {} (delay: {}ms)", rule_name, delay_ms);
211            }
212            ActionType::CompleteWorkflow { workflow_name } => {
213                println!("✔️ COMPLETE WORKFLOW: {}", workflow_name);
214            }
215            ActionType::SetWorkflowData { key, value: _ } => {
216                println!("📊 SET WORKFLOW DATA: {}", key);
217            }
218        }
219    }
220
221    /// Convert Value to FactValue
222    fn value_to_fact_value(value: &Value) -> FactValue {
223        match value {
224            Value::Number(n) => {
225                // Try integer first, fall back to float
226                if n.fract() == 0.0 {
227                    FactValue::Integer(*n as i64)
228                } else {
229                    FactValue::Float(*n)
230                }
231            }
232            Value::Integer(i) => FactValue::Integer(*i),
233            Value::String(s) => FactValue::String(s.clone()),
234            Value::Boolean(b) => FactValue::Boolean(*b),
235            Value::Null => FactValue::Null,
236            Value::Array(arr) => {
237                let fact_arr: Vec<FactValue> = arr.iter()
238                    .map(Self::value_to_fact_value)
239                    .collect();
240                FactValue::Array(fact_arr)
241            }
242            Value::Object(_) => {
243                // For now, treat objects as strings
244                FactValue::String("object".to_string())
245            }
246        }
247    }
248
249    /// Extract fact type dependencies from rule
250    fn extract_dependencies(rule: &TypedReteUlRule) -> Vec<String> {
251        let mut deps = Vec::new();
252        Self::extract_deps_from_node(&rule.node, &mut deps);
253
254        // Deduplicate
255        deps.sort();
256        deps.dedup();
257
258        deps
259    }
260
261    /// Recursively extract dependencies from ReteUlNode
262    fn extract_deps_from_node(node: &ReteUlNode, deps: &mut Vec<String>) {
263        match node {
264            ReteUlNode::UlAlpha(alpha) => {
265                // Extract fact type from field (e.g., "Person.age" -> "Person")
266                if let Some(dot_pos) = alpha.field.find('.') {
267                    let fact_type = alpha.field[..dot_pos].to_string();
268                    deps.push(fact_type);
269                }
270            }
271            ReteUlNode::UlAnd(left, right) | ReteUlNode::UlOr(left, right) => {
272                Self::extract_deps_from_node(left, deps);
273                Self::extract_deps_from_node(right, deps);
274            }
275            ReteUlNode::UlNot(inner)
276            | ReteUlNode::UlExists(inner)
277            | ReteUlNode::UlForall(inner) => {
278                Self::extract_deps_from_node(inner, deps);
279            }
280            ReteUlNode::UlTerminal(_) => {
281                // Terminal nodes don't have dependencies
282            }
283        }
284    }
285}
286
287#[cfg(test)]
288mod tests {
289    use super::*;
290
291    #[test]
292    fn test_convert_simple_rule() {
293        let grl = r#"
294        rule "TestRule" salience 10 no-loop {
295            when
296                Person.age > 18
297            then
298                Person.is_adult = true;
299        }
300        "#;
301
302        let rules = GRLParser::parse_rules(grl).unwrap();
303        assert_eq!(rules.len(), 1);
304
305        let rete_rule = GrlReteLoader::convert_rule_to_rete(rules[0].clone()).unwrap();
306        assert_eq!(rete_rule.name, "TestRule");
307        assert_eq!(rete_rule.priority, 10);
308        assert!(rete_rule.no_loop);
309    }
310
311    #[test]
312    fn test_extract_dependencies() {
313        let grl = r#"
314        rule "MultiTypeRule" {
315            when
316                Person.age > 18 && Order.amount > 1000
317            then
318                Person.premium = true;
319        }
320        "#;
321
322        let rules = GRLParser::parse_rules(grl).unwrap();
323        let rete_rule = GrlReteLoader::convert_rule_to_rete(rules[0].clone()).unwrap();
324        let deps = GrlReteLoader::extract_dependencies(&rete_rule);
325
326        assert_eq!(deps.len(), 2);
327        assert!(deps.contains(&"Person".to_string()));
328        assert!(deps.contains(&"Order".to_string()));
329    }
330
331    #[test]
332    fn test_load_from_string() {
333        let grl = r#"
334        rule "Rule1" {
335            when
336                Person.age > 18
337            then
338                Person.is_adult = true;
339        }
340
341        rule "Rule2" {
342            when
343                Order.amount > 1000
344            then
345                Order.high_value = true;
346        }
347        "#;
348
349        let mut engine = IncrementalEngine::new();
350        let count = GrlReteLoader::load_from_string(grl, &mut engine).unwrap();
351
352        assert_eq!(count, 2);
353    }
354}