rust_rule_engine/rete/
grl_loader.rs

1//! GRL to RETE Converter
2//!
3//! This module converts GRL (Grule Rule Language) rules into RETE-UL structures
4//! for efficient pattern matching and rule execution.
5
6use crate::engine::rule::{Condition, ConditionGroup, Rule};
7use crate::parser::GRLParser;
8use crate::rete::{AlphaNode, ReteUlNode, TypedReteUlRule};
9use crate::rete::facts::{TypedFacts, FactValue};
10use crate::rete::propagation::IncrementalEngine;
11use crate::types::{Operator, Value};
12use crate::errors::{Result, RuleEngineError};
13use std::fs;
14use std::path::Path;
15
16/// GRL to RETE Loader
17/// Converts GRL rules into RETE-UL structures
18pub struct GrlReteLoader;
19
20impl GrlReteLoader {
21    /// Load rules from a GRL file into RETE engine
22    pub fn load_from_file<P: AsRef<Path>>(
23        path: P,
24        engine: &mut IncrementalEngine,
25    ) -> Result<usize> {
26        let grl_text = fs::read_to_string(path.as_ref()).map_err(|e| {
27            RuleEngineError::ParseError {
28                message: format!("Failed to read GRL file: {}", e),
29            }
30        })?;
31
32        Self::load_from_string(&grl_text, engine)
33    }
34
35    /// Load rules from GRL string into RETE engine
36    pub fn load_from_string(
37        grl_text: &str,
38        engine: &mut IncrementalEngine,
39    ) -> Result<usize> {
40        // Parse GRL rules
41        let rules = GRLParser::parse_rules(grl_text)?;
42
43        let mut loaded_count = 0;
44
45        for rule in rules {
46            // Convert GRL rule to RETE rule
47            let rete_rule = Self::convert_rule_to_rete(rule)?;
48
49            // Extract dependencies (fact types used in conditions)
50            let dependencies = Self::extract_dependencies(&rete_rule);
51
52            // Add to engine
53            engine.add_rule(rete_rule, dependencies);
54            loaded_count += 1;
55        }
56
57        Ok(loaded_count)
58    }
59
60    /// Convert GRL Rule to TypedReteUlRule
61    fn convert_rule_to_rete(rule: Rule) -> Result<TypedReteUlRule> {
62        // Convert ConditionGroup to ReteUlNode
63        let node = Self::convert_condition_group(&rule.conditions)?;
64
65        // Create RETE rule
66        let rete_rule = TypedReteUlRule {
67            name: rule.name.clone(),
68            node,
69            priority: rule.salience,
70            no_loop: rule.no_loop,
71            action: Self::create_action_closure(rule.actions),
72        };
73
74        Ok(rete_rule)
75    }
76
77    /// Convert ConditionGroup to ReteUlNode
78    fn convert_condition_group(group: &ConditionGroup) -> Result<ReteUlNode> {
79        match group {
80            ConditionGroup::Single(condition) => {
81                Self::convert_condition(condition)
82            }
83            ConditionGroup::Compound { left, operator, right } => {
84                let left_node = Self::convert_condition_group(left)?;
85                let right_node = Self::convert_condition_group(right)?;
86
87                match operator {
88                    crate::types::LogicalOperator::And => {
89                        Ok(ReteUlNode::UlAnd(Box::new(left_node), Box::new(right_node)))
90                    }
91                    crate::types::LogicalOperator::Or => {
92                        Ok(ReteUlNode::UlOr(Box::new(left_node), Box::new(right_node)))
93                    }
94                    crate::types::LogicalOperator::Not => {
95                        // For NOT, we only use left node
96                        Ok(ReteUlNode::UlNot(Box::new(left_node)))
97                    }
98                }
99            }
100            ConditionGroup::Not(inner) => {
101                let inner_node = Self::convert_condition_group(inner)?;
102                Ok(ReteUlNode::UlNot(Box::new(inner_node)))
103            }
104            ConditionGroup::Exists(inner) => {
105                let inner_node = Self::convert_condition_group(inner)?;
106                Ok(ReteUlNode::UlExists(Box::new(inner_node)))
107            }
108            ConditionGroup::Forall(inner) => {
109                let inner_node = Self::convert_condition_group(inner)?;
110                Ok(ReteUlNode::UlForall(Box::new(inner_node)))
111            }
112            ConditionGroup::Accumulate {
113                result_var,
114                source_pattern,
115                extract_field,
116                source_conditions,
117                function,
118                function_arg,
119            } => {
120                Ok(ReteUlNode::UlAccumulate {
121                    result_var: result_var.clone(),
122                    source_pattern: source_pattern.clone(),
123                    extract_field: extract_field.clone(),
124                    source_conditions: source_conditions.clone(),
125                    function: function.clone(),
126                    function_arg: function_arg.clone(),
127                })
128            }
129        }
130    }
131
132    /// Convert single Condition to ReteUlNode (AlphaNode or UlMultiField)
133    fn convert_condition(condition: &Condition) -> Result<ReteUlNode> {
134        use crate::engine::rule::ConditionExpression;
135
136        // Check if this is a multifield condition
137        match &condition.expression {
138            ConditionExpression::MultiField { field, operation, variable } => {
139                // Convert to UlMultiField node
140                let operator_str = Self::operator_to_string(&condition.operator);
141                let value_str = if !matches!(condition.value, Value::Boolean(_)) {
142                    Some(Self::value_to_string(&condition.value))
143                } else {
144                    None
145                };
146
147                // Determine if this is a count operation with comparison
148                let (op, cmp_val) = if operation == "count" && operator_str != "==" {
149                    // Count with comparison: "count > 5"
150                    (Some(operator_str), value_str)
151                } else {
152                    // Other operations
153                    (None, value_str)
154                };
155
156                Ok(ReteUlNode::UlMultiField {
157                    field: field.clone(),
158                    operation: operation.clone(),
159                    value: if operation == "contains" { cmp_val.clone() } else { None },
160                    operator: op,
161                    compare_value: if operation == "count" { cmp_val } else { None },
162                })
163            }
164            _ => {
165                // Standard alpha node for regular conditions
166                let operator_str = Self::operator_to_string(&condition.operator);
167                let value_str = Self::value_to_string(&condition.value);
168
169                let alpha = AlphaNode {
170                    field: condition.field.clone(),
171                    operator: operator_str,
172                    value: value_str,
173                };
174
175                Ok(ReteUlNode::UlAlpha(alpha))
176            }
177        }
178    }
179
180    /// Convert Operator to string
181    fn operator_to_string(op: &Operator) -> String {
182        match op {
183            Operator::Equal => "==".to_string(),
184            Operator::NotEqual => "!=".to_string(),
185            Operator::GreaterThan => ">".to_string(),
186            Operator::GreaterThanOrEqual => ">=".to_string(),
187            Operator::LessThan => "<".to_string(),
188            Operator::LessThanOrEqual => "<=".to_string(),
189            Operator::Contains => "contains".to_string(),
190            Operator::NotContains => "!contains".to_string(),
191            Operator::StartsWith => "startsWith".to_string(),
192            Operator::EndsWith => "endsWith".to_string(),
193            Operator::Matches => "matches".to_string(),
194        }
195    }
196
197    /// Convert Value to string for AlphaNode
198    fn value_to_string(value: &Value) -> String {
199        match value {
200            Value::Number(n) => n.to_string(),
201            Value::Integer(i) => i.to_string(),
202            Value::String(s) => s.clone(),
203            Value::Boolean(b) => b.to_string(),
204            Value::Null => "null".to_string(),
205            Value::Array(arr) => {
206                // Convert array to JSON-like string
207                let items: Vec<String> = arr.iter()
208                    .map(|v| Self::value_to_string(v))
209                    .collect();
210                format!("[{}]", items.join(","))
211            }
212            Value::Object(_) => {
213                // For objects, we'll use a simplified representation
214                "object".to_string()
215            }
216            Value::Expression(expr) => {
217                // For expressions, return the expression string
218                expr.clone()
219            }
220        }
221    }
222
223    /// Create action closure from ActionType list
224    fn create_action_closure(
225        actions: Vec<crate::types::ActionType>,
226    ) -> std::sync::Arc<dyn Fn(&mut TypedFacts) + Send + Sync> {
227        std::sync::Arc::new(move |facts: &mut TypedFacts| {
228            // Execute actions
229            for action in &actions {
230                Self::execute_action(action, facts);
231            }
232        })
233    }
234
235    /// Execute a single action
236    fn execute_action(action: &crate::types::ActionType, facts: &mut TypedFacts) {
237        use crate::types::ActionType;
238
239        match action {
240            ActionType::Set { field, value } => {
241                // Check if value is an expression that needs evaluation
242                let evaluated_value = match value {
243                    Value::Expression(expr) => {
244                        // Evaluate expression with current facts
245                        Self::evaluate_expression_for_rete(expr, facts)
246                    }
247                    _ => value.clone(),
248                };
249
250                // Convert evaluated value to FactValue
251                let fact_value = Self::value_to_fact_value(&evaluated_value);
252                facts.set(field, fact_value);
253            }
254            ActionType::Log { message } => {
255                println!("📝 LOG: {}", message);
256            }
257            ActionType::Call { function, args: _ } => {
258                // For function calls, we'll just log them
259                println!("🔧 CALL: {}", function);
260            }
261            ActionType::MethodCall { object, method, args: _ } => {
262                println!("📞 METHOD: {}.{}", object, method);
263            }
264            ActionType::Update { object } => {
265                println!("🔄 UPDATE: {}", object);
266            }
267            ActionType::Retract { object } => {
268                println!("🗑️ RETRACT: {}", object);
269                // Mark fact as retracted - actual retraction will be handled by engine
270                facts.set(format!("_retract_{}", object), FactValue::Boolean(true));
271            }
272            ActionType::Custom { action_type, params: _ } => {
273                println!("⚙️ CUSTOM: {}", action_type);
274            }
275            ActionType::ActivateAgendaGroup { group } => {
276                println!("📋 ACTIVATE GROUP: {}", group);
277            }
278            ActionType::ScheduleRule { rule_name, delay_ms } => {
279                println!("⏰ SCHEDULE: {} (delay: {}ms)", rule_name, delay_ms);
280            }
281            ActionType::CompleteWorkflow { workflow_name } => {
282                println!("✔️ COMPLETE WORKFLOW: {}", workflow_name);
283            }
284            ActionType::SetWorkflowData { key, value: _ } => {
285                println!("📊 SET WORKFLOW DATA: {}", key);
286            }
287        }
288    }
289
290    /// Convert Value to FactValue
291    fn value_to_fact_value(value: &Value) -> FactValue {
292        match value {
293            Value::Number(n) => {
294                // Try integer first, fall back to float
295                if n.fract() == 0.0 {
296                    FactValue::Integer(*n as i64)
297                } else {
298                    FactValue::Float(*n)
299                }
300            }
301            Value::Integer(i) => FactValue::Integer(*i),
302            Value::String(s) => FactValue::String(s.clone()),
303            Value::Boolean(b) => FactValue::Boolean(*b),
304            Value::Null => FactValue::Null,
305            Value::Array(arr) => {
306                let fact_arr: Vec<FactValue> = arr.iter()
307                    .map(Self::value_to_fact_value)
308                    .collect();
309                FactValue::Array(fact_arr)
310            }
311            Value::Object(_) => {
312                // For now, treat objects as strings
313                FactValue::String("object".to_string())
314            }
315            Value::Expression(expr) => {
316                // For expressions, store as string - will be evaluated at runtime
317                FactValue::String(format!("[EXPR: {}]", expr))
318            }
319        }
320    }
321
322    /// Extract fact type dependencies from rule
323    fn extract_dependencies(rule: &TypedReteUlRule) -> Vec<String> {
324        let mut deps = Vec::new();
325        Self::extract_deps_from_node(&rule.node, &mut deps);
326
327        // Deduplicate
328        deps.sort();
329        deps.dedup();
330
331        deps
332    }
333
334    /// Recursively extract dependencies from ReteUlNode
335    fn extract_deps_from_node(node: &ReteUlNode, deps: &mut Vec<String>) {
336        match node {
337            ReteUlNode::UlAlpha(alpha) => {
338                // Extract fact type from field (e.g., "Person.age" -> "Person")
339                if let Some(dot_pos) = alpha.field.find('.') {
340                    let fact_type = alpha.field[..dot_pos].to_string();
341                    deps.push(fact_type);
342                }
343            }
344            ReteUlNode::UlMultiField { field, .. } => {
345                // Extract fact type from field (e.g., "Order.items" -> "Order")
346                if let Some(dot_pos) = field.find('.') {
347                    let fact_type = field[..dot_pos].to_string();
348                    deps.push(fact_type);
349                }
350            }
351            ReteUlNode::UlAnd(left, right) | ReteUlNode::UlOr(left, right) => {
352                Self::extract_deps_from_node(left, deps);
353                Self::extract_deps_from_node(right, deps);
354            }
355            ReteUlNode::UlNot(inner)
356            | ReteUlNode::UlExists(inner)
357            | ReteUlNode::UlForall(inner) => {
358                Self::extract_deps_from_node(inner, deps);
359            }
360            ReteUlNode::UlAccumulate { source_pattern, .. } => {
361                // Add source pattern as a dependency
362                deps.push(source_pattern.clone());
363            }
364            ReteUlNode::UlTerminal(_) => {
365                // Terminal nodes don't have dependencies
366            }
367        }
368    }
369
370    /// Evaluate expression for RETE engine (converts TypedFacts to Facts temporarily)
371    fn evaluate_expression_for_rete(expr: &str, typed_facts: &TypedFacts) -> Value {
372        // Convert TypedFacts to Facts for expression evaluation
373        use crate::engine::facts::Facts;
374
375        let mut facts = Facts::new();
376
377        // Copy all facts from TypedFacts to Facts
378        // RETE stores facts as "quantity" while GRL uses "Order.quantity"
379        // We need to support both formats
380        for (key, value) in typed_facts.get_all() {
381            let converted_value = Self::fact_value_to_value(value);
382
383            // Store both with and without prefix
384            // E.g., "quantity" -> both "quantity" and "Order.quantity"
385            facts.set(key, converted_value.clone());
386
387            // Also try to add with "Order." prefix if not already present
388            if !key.contains('.') {
389                facts.set(&format!("Order.{}", key), converted_value);
390            }
391        }
392
393        // Evaluate expression
394        match crate::expression::evaluate_expression(expr, &facts) {
395            Ok(result) => result,
396            Err(e) => {
397                // Silently fallback - this can happen with chained expressions in RETE
398                // due to working memory complexity
399                Value::String(expr.to_string())
400            }
401        }
402    }
403
404    /// Convert FactValue back to Value (reverse of value_to_fact_value)
405    fn fact_value_to_value(fact_value: &FactValue) -> Value {
406        match fact_value {
407            FactValue::String(s) => {
408                // Try to parse as number first
409                if let Ok(i) = s.parse::<i64>() {
410                    Value::Integer(i)
411                } else if let Ok(f) = s.parse::<f64>() {
412                    Value::Number(f)
413                } else if s == "true" {
414                    Value::Boolean(true)
415                } else if s == "false" {
416                    Value::Boolean(false)
417                } else {
418                    Value::String(s.clone())
419                }
420            }
421            FactValue::Integer(i) => Value::Integer(*i),
422            FactValue::Float(f) => Value::Number(*f),
423            FactValue::Boolean(b) => Value::Boolean(*b),
424            FactValue::Array(arr) => {
425                Value::Array(arr.iter().map(Self::fact_value_to_value).collect())
426            }
427            FactValue::Null => Value::Null,
428        }
429    }
430}
431
432#[cfg(test)]
433mod tests {
434    use super::*;
435
436    #[test]
437    fn test_convert_simple_rule() {
438        let grl = r#"
439        rule "TestRule" salience 10 no-loop {
440            when
441                Person.age > 18
442            then
443                Person.is_adult = true;
444        }
445        "#;
446
447        let rules = GRLParser::parse_rules(grl).unwrap();
448        assert_eq!(rules.len(), 1);
449
450        let rete_rule = GrlReteLoader::convert_rule_to_rete(rules[0].clone()).unwrap();
451        assert_eq!(rete_rule.name, "TestRule");
452        assert_eq!(rete_rule.priority, 10);
453        assert!(rete_rule.no_loop);
454    }
455
456    #[test]
457    fn test_extract_dependencies() {
458        let grl = r#"
459        rule "MultiTypeRule" {
460            when
461                Person.age > 18 && Order.amount > 1000
462            then
463                Person.premium = true;
464        }
465        "#;
466
467        let rules = GRLParser::parse_rules(grl).unwrap();
468        let rete_rule = GrlReteLoader::convert_rule_to_rete(rules[0].clone()).unwrap();
469        let deps = GrlReteLoader::extract_dependencies(&rete_rule);
470
471        assert_eq!(deps.len(), 2);
472        assert!(deps.contains(&"Person".to_string()));
473        assert!(deps.contains(&"Order".to_string()));
474    }
475
476    #[test]
477    fn test_load_from_string() {
478        let grl = r#"
479        rule "Rule1" {
480            when
481                Person.age > 18
482            then
483                Person.is_adult = true;
484        }
485
486        rule "Rule2" {
487            when
488                Order.amount > 1000
489            then
490                Order.high_value = true;
491        }
492        "#;
493
494        let mut engine = IncrementalEngine::new();
495        let count = GrlReteLoader::load_from_string(grl, &mut engine).unwrap();
496
497        assert_eq!(count, 2);
498    }
499}