1use crate::engine::rule::{Condition, ConditionGroup, Rule};
7use crate::parser::GRLParser;
8use crate::rete::{AlphaNode, ReteUlNode, TypedReteUlRule};
9use crate::rete::facts::{TypedFacts, FactValue};
10use crate::rete::propagation::IncrementalEngine;
11use crate::types::{Operator, Value};
12use crate::errors::{Result, RuleEngineError};
13use std::fs;
14use std::path::Path;
15
16pub struct GrlReteLoader;
19
20impl GrlReteLoader {
21 pub fn load_from_file<P: AsRef<Path>>(
23 path: P,
24 engine: &mut IncrementalEngine,
25 ) -> Result<usize> {
26 let grl_text = fs::read_to_string(path.as_ref()).map_err(|e| {
27 RuleEngineError::ParseError {
28 message: format!("Failed to read GRL file: {}", e),
29 }
30 })?;
31
32 Self::load_from_string(&grl_text, engine)
33 }
34
35 pub fn load_from_string(
37 grl_text: &str,
38 engine: &mut IncrementalEngine,
39 ) -> Result<usize> {
40 let rules = GRLParser::parse_rules(grl_text)?;
42
43 let mut loaded_count = 0;
44
45 for rule in rules {
46 let rete_rule = Self::convert_rule_to_rete(rule)?;
48
49 let dependencies = Self::extract_dependencies(&rete_rule);
51
52 engine.add_rule(rete_rule, dependencies);
54 loaded_count += 1;
55 }
56
57 Ok(loaded_count)
58 }
59
60 fn convert_rule_to_rete(rule: Rule) -> Result<TypedReteUlRule> {
62 let node = Self::convert_condition_group(&rule.conditions)?;
64
65 let rete_rule = TypedReteUlRule {
67 name: rule.name.clone(),
68 node,
69 priority: rule.salience,
70 no_loop: rule.no_loop,
71 action: Self::create_action_closure(rule.actions),
72 };
73
74 Ok(rete_rule)
75 }
76
77 fn convert_condition_group(group: &ConditionGroup) -> Result<ReteUlNode> {
79 match group {
80 ConditionGroup::Single(condition) => {
81 Self::convert_condition(condition)
82 }
83 ConditionGroup::Compound { left, operator, right } => {
84 let left_node = Self::convert_condition_group(left)?;
85 let right_node = Self::convert_condition_group(right)?;
86
87 match operator {
88 crate::types::LogicalOperator::And => {
89 Ok(ReteUlNode::UlAnd(Box::new(left_node), Box::new(right_node)))
90 }
91 crate::types::LogicalOperator::Or => {
92 Ok(ReteUlNode::UlOr(Box::new(left_node), Box::new(right_node)))
93 }
94 crate::types::LogicalOperator::Not => {
95 Ok(ReteUlNode::UlNot(Box::new(left_node)))
97 }
98 }
99 }
100 ConditionGroup::Not(inner) => {
101 let inner_node = Self::convert_condition_group(inner)?;
102 Ok(ReteUlNode::UlNot(Box::new(inner_node)))
103 }
104 ConditionGroup::Exists(inner) => {
105 let inner_node = Self::convert_condition_group(inner)?;
106 Ok(ReteUlNode::UlExists(Box::new(inner_node)))
107 }
108 ConditionGroup::Forall(inner) => {
109 let inner_node = Self::convert_condition_group(inner)?;
110 Ok(ReteUlNode::UlForall(Box::new(inner_node)))
111 }
112 ConditionGroup::Accumulate {
113 result_var,
114 source_pattern,
115 extract_field,
116 source_conditions,
117 function,
118 function_arg,
119 } => {
120 Ok(ReteUlNode::UlAccumulate {
121 result_var: result_var.clone(),
122 source_pattern: source_pattern.clone(),
123 extract_field: extract_field.clone(),
124 source_conditions: source_conditions.clone(),
125 function: function.clone(),
126 function_arg: function_arg.clone(),
127 })
128 }
129 }
130 }
131
132 fn convert_condition(condition: &Condition) -> Result<ReteUlNode> {
134 let operator_str = Self::operator_to_string(&condition.operator);
135 let value_str = Self::value_to_string(&condition.value);
136
137 let alpha = AlphaNode {
138 field: condition.field.clone(),
139 operator: operator_str,
140 value: value_str,
141 };
142
143 Ok(ReteUlNode::UlAlpha(alpha))
144 }
145
146 fn operator_to_string(op: &Operator) -> String {
148 match op {
149 Operator::Equal => "==".to_string(),
150 Operator::NotEqual => "!=".to_string(),
151 Operator::GreaterThan => ">".to_string(),
152 Operator::GreaterThanOrEqual => ">=".to_string(),
153 Operator::LessThan => "<".to_string(),
154 Operator::LessThanOrEqual => "<=".to_string(),
155 Operator::Contains => "contains".to_string(),
156 Operator::NotContains => "!contains".to_string(),
157 Operator::StartsWith => "startsWith".to_string(),
158 Operator::EndsWith => "endsWith".to_string(),
159 Operator::Matches => "matches".to_string(),
160 }
161 }
162
163 fn value_to_string(value: &Value) -> String {
165 match value {
166 Value::Number(n) => n.to_string(),
167 Value::Integer(i) => i.to_string(),
168 Value::String(s) => s.clone(),
169 Value::Boolean(b) => b.to_string(),
170 Value::Null => "null".to_string(),
171 Value::Array(arr) => {
172 let items: Vec<String> = arr.iter()
174 .map(|v| Self::value_to_string(v))
175 .collect();
176 format!("[{}]", items.join(","))
177 }
178 Value::Object(_) => {
179 "object".to_string()
181 }
182 }
183 }
184
185 fn create_action_closure(
187 actions: Vec<crate::types::ActionType>,
188 ) -> Box<dyn FnMut(&mut TypedFacts)> {
189 Box::new(move |facts: &mut TypedFacts| {
190 for action in &actions {
192 Self::execute_action(action, facts);
193 }
194 })
195 }
196
197 fn execute_action(action: &crate::types::ActionType, facts: &mut TypedFacts) {
199 use crate::types::ActionType;
200
201 match action {
202 ActionType::Set { field, value } => {
203 let fact_value = Self::value_to_fact_value(value);
205 facts.set(field, fact_value);
206 }
207 ActionType::Log { message } => {
208 println!("📝 LOG: {}", message);
209 }
210 ActionType::Call { function, args: _ } => {
211 println!("🔧 CALL: {}", function);
213 }
214 ActionType::MethodCall { object, method, args: _ } => {
215 println!("📞 METHOD: {}.{}", object, method);
216 }
217 ActionType::Update { object } => {
218 println!("🔄 UPDATE: {}", object);
219 }
220 ActionType::Custom { action_type, params: _ } => {
221 println!("⚙️ CUSTOM: {}", action_type);
222 }
223 ActionType::ActivateAgendaGroup { group } => {
224 println!("📋 ACTIVATE GROUP: {}", group);
225 }
226 ActionType::ScheduleRule { rule_name, delay_ms } => {
227 println!("⏰ SCHEDULE: {} (delay: {}ms)", rule_name, delay_ms);
228 }
229 ActionType::CompleteWorkflow { workflow_name } => {
230 println!("✔️ COMPLETE WORKFLOW: {}", workflow_name);
231 }
232 ActionType::SetWorkflowData { key, value: _ } => {
233 println!("📊 SET WORKFLOW DATA: {}", key);
234 }
235 }
236 }
237
238 fn value_to_fact_value(value: &Value) -> FactValue {
240 match value {
241 Value::Number(n) => {
242 if n.fract() == 0.0 {
244 FactValue::Integer(*n as i64)
245 } else {
246 FactValue::Float(*n)
247 }
248 }
249 Value::Integer(i) => FactValue::Integer(*i),
250 Value::String(s) => FactValue::String(s.clone()),
251 Value::Boolean(b) => FactValue::Boolean(*b),
252 Value::Null => FactValue::Null,
253 Value::Array(arr) => {
254 let fact_arr: Vec<FactValue> = arr.iter()
255 .map(Self::value_to_fact_value)
256 .collect();
257 FactValue::Array(fact_arr)
258 }
259 Value::Object(_) => {
260 FactValue::String("object".to_string())
262 }
263 }
264 }
265
266 fn extract_dependencies(rule: &TypedReteUlRule) -> Vec<String> {
268 let mut deps = Vec::new();
269 Self::extract_deps_from_node(&rule.node, &mut deps);
270
271 deps.sort();
273 deps.dedup();
274
275 deps
276 }
277
278 fn extract_deps_from_node(node: &ReteUlNode, deps: &mut Vec<String>) {
280 match node {
281 ReteUlNode::UlAlpha(alpha) => {
282 if let Some(dot_pos) = alpha.field.find('.') {
284 let fact_type = alpha.field[..dot_pos].to_string();
285 deps.push(fact_type);
286 }
287 }
288 ReteUlNode::UlAnd(left, right) | ReteUlNode::UlOr(left, right) => {
289 Self::extract_deps_from_node(left, deps);
290 Self::extract_deps_from_node(right, deps);
291 }
292 ReteUlNode::UlNot(inner)
293 | ReteUlNode::UlExists(inner)
294 | ReteUlNode::UlForall(inner) => {
295 Self::extract_deps_from_node(inner, deps);
296 }
297 ReteUlNode::UlAccumulate { source_pattern, .. } => {
298 deps.push(source_pattern.clone());
300 }
301 ReteUlNode::UlTerminal(_) => {
302 }
304 }
305 }
306}
307
308#[cfg(test)]
309mod tests {
310 use super::*;
311
312 #[test]
313 fn test_convert_simple_rule() {
314 let grl = r#"
315 rule "TestRule" salience 10 no-loop {
316 when
317 Person.age > 18
318 then
319 Person.is_adult = true;
320 }
321 "#;
322
323 let rules = GRLParser::parse_rules(grl).unwrap();
324 assert_eq!(rules.len(), 1);
325
326 let rete_rule = GrlReteLoader::convert_rule_to_rete(rules[0].clone()).unwrap();
327 assert_eq!(rete_rule.name, "TestRule");
328 assert_eq!(rete_rule.priority, 10);
329 assert!(rete_rule.no_loop);
330 }
331
332 #[test]
333 fn test_extract_dependencies() {
334 let grl = r#"
335 rule "MultiTypeRule" {
336 when
337 Person.age > 18 && Order.amount > 1000
338 then
339 Person.premium = true;
340 }
341 "#;
342
343 let rules = GRLParser::parse_rules(grl).unwrap();
344 let rete_rule = GrlReteLoader::convert_rule_to_rete(rules[0].clone()).unwrap();
345 let deps = GrlReteLoader::extract_dependencies(&rete_rule);
346
347 assert_eq!(deps.len(), 2);
348 assert!(deps.contains(&"Person".to_string()));
349 assert!(deps.contains(&"Order".to_string()));
350 }
351
352 #[test]
353 fn test_load_from_string() {
354 let grl = r#"
355 rule "Rule1" {
356 when
357 Person.age > 18
358 then
359 Person.is_adult = true;
360 }
361
362 rule "Rule2" {
363 when
364 Order.amount > 1000
365 then
366 Order.high_value = true;
367 }
368 "#;
369
370 let mut engine = IncrementalEngine::new();
371 let count = GrlReteLoader::load_from_string(grl, &mut engine).unwrap();
372
373 assert_eq!(count, 2);
374 }
375}