rust_query/transaction.rs
1use std::{
2 cell::RefCell, convert::Infallible, iter::zip, marker::PhantomData, sync::atomic::AtomicI64,
3};
4
5use rusqlite::ErrorCode;
6use sea_query::{
7 Alias, CommonTableExpression, DeleteStatement, Expr, ExprTrait, InsertStatement, IntoTableRef,
8 SelectStatement, SqliteQueryBuilder, UpdateStatement, WithClause,
9};
10use sea_query_rusqlite::RusqliteBinder;
11use self_cell::{MutBorrow, self_cell};
12
13use crate::{
14 IntoExpr, IntoSelect, Table, TableRow,
15 migrate::{Schema, check_schema, schema_version, user_version},
16 private::Reader,
17 query::{Query, track_stmt},
18 rows::Rows,
19 value::{DynTypedExpr, SecretFromSql, ValueBuilder},
20 writable::TableInsert,
21};
22
23/// [Database] is a proof that the database has been configured.
24///
25/// Creating a [Database] requires going through the steps to migrate an existing database to
26/// the required schema, or creating a new database from scratch (See also [crate::migration::Config]).
27/// Please see [Database::migrator] to get started.
28///
29/// Having done the setup to create a compatible database is sadly not a guarantee that the
30/// database will stay compatible for the lifetime of the [Database] struct.
31/// That is why [Database] also stores the `schema_version`. This allows detecting non-malicious
32/// modifications to the schema and gives us the ability to panic when this is detected.
33/// Such non-malicious modification of the schema can happen for example if another [Database]
34/// instance is created with additional migrations (e.g. by another newer instance of your program).
35pub struct Database<S> {
36 pub(crate) manager: r2d2_sqlite::SqliteConnectionManager,
37 pub(crate) schema_version: AtomicI64,
38 pub(crate) schema: PhantomData<S>,
39 // TODO: this should technically not be required with `unlock_notify`.
40 // see <https://github.com/rusqlite/rusqlite/issues/1736>
41 pub(crate) mut_lock: parking_lot::FairMutex<()>,
42}
43
44use rusqlite::Connection;
45type RTransaction<'x> = Option<rusqlite::Transaction<'x>>;
46
47self_cell!(
48 pub struct OwnedTransaction {
49 owner: MutBorrow<Connection>,
50
51 #[covariant]
52 dependent: RTransaction,
53 }
54);
55
56/// SAFETY:
57/// `RTransaction: !Send` because it borrows from `Connection` and `Connection: !Sync`.
58/// `OwnedTransaction` can be `Send` because we know that `dependent` is the only
59/// borrow of `owner` and `OwnedTransaction: !Sync` so `dependent` can not be borrowed
60/// from multiple threads.
61unsafe impl Send for OwnedTransaction {}
62
63assert_not_impl_any! {OwnedTransaction: Sync}
64
65thread_local! {
66 pub(crate) static TXN: RefCell<Option<OwnedTransaction>> = const { RefCell::new(None) };
67}
68
69impl OwnedTransaction {
70 pub fn get(&self) -> &rusqlite::Transaction<'_> {
71 self.borrow_dependent().as_ref().unwrap()
72 }
73
74 pub fn with(mut self, f: impl FnOnce(rusqlite::Transaction<'_>)) {
75 self.with_dependent_mut(|_, b| f(b.take().unwrap()))
76 }
77}
78
79impl<S: Send + Sync + Schema> Database<S> {
80 /// Create a [Transaction]. This operation always completes immediately as it does not need to wait on other transactions.
81 ///
82 /// This function will panic if the schema was modified compared to when the [Database] value
83 /// was created. This can happen for example by running another instance of your program with
84 /// additional migrations.
85 pub fn transaction<R: Send>(&self, f: impl Send + FnOnce(&'static Transaction<S>) -> R) -> R {
86 let res = std::thread::scope(|scope| {
87 scope
88 .spawn(|| {
89 use r2d2::ManageConnection;
90
91 let conn = self.manager.connect().unwrap();
92 let owned = OwnedTransaction::new(MutBorrow::new(conn), |conn| {
93 Some(conn.borrow_mut().transaction().unwrap())
94 });
95
96 f(Transaction::new_checked(owned, &self.schema_version))
97 })
98 .join()
99 });
100 match res {
101 Ok(val) => val,
102 Err(payload) => std::panic::resume_unwind(payload),
103 }
104 }
105
106 /// Create a mutable [Transaction].
107 /// This operation needs to wait for all other mutable [Transaction]s for this database to be finished.
108 ///
109 /// Whether the transaction is commited depends on the result of the closure.
110 /// The transaction is only commited if the closure return [Ok]. In the case that it returns [Err]
111 /// or when the closure panics, a rollback is performed.
112 ///
113 /// The implementation uses the [unlock_notify](https://sqlite.org/unlock_notify.html) feature of sqlite.
114 /// This makes it work across processes.
115 /// Note: you can create a deadlock if you are holding on to another lock while trying to
116 /// get a mutable transaction!
117 ///
118 /// This function will panic if the schema was modified compared to when the [Database] value
119 /// was created. This can happen for example by running another instance of your program with
120 /// additional migrations.
121 pub fn transaction_mut<O: Send, E: Send>(
122 &self,
123 f: impl Send + FnOnce(&'static mut Transaction<S>) -> Result<O, E>,
124 ) -> Result<O, E> {
125 use r2d2::ManageConnection;
126 let conn = self.manager.connect().unwrap();
127
128 // Acquire the lock just before creating the transaction
129 let guard = self.mut_lock.lock();
130
131 let owned = OwnedTransaction::new(MutBorrow::new(conn), |conn| {
132 let txn = conn
133 .borrow_mut()
134 .transaction_with_behavior(rusqlite::TransactionBehavior::Immediate)
135 .unwrap();
136 Some(txn)
137 });
138 let join_res = std::thread::scope(|scope| {
139 scope
140 .spawn(|| {
141 let res = f(Transaction::new_checked(owned, &self.schema_version));
142 let owned = TXN.take().unwrap();
143 (res, owned)
144 })
145 .join()
146 });
147
148 // Drop the guard before commiting to let sqlite go to the next transaction
149 // more quickly while guaranteeing that the database will unlock soon.
150 drop(guard);
151
152 let (res, owned) = match join_res {
153 Ok(val) => val,
154 Err(payload) => std::panic::resume_unwind(payload),
155 };
156
157 if res.is_ok() {
158 owned.with(|x| x.commit().unwrap());
159 } else {
160 owned.with(|x| x.rollback().unwrap());
161 }
162 res
163 }
164
165 /// Same as [Self::transaction_mut], but always commits the transaction.
166 ///
167 /// The only exception is that if the closure panics, a rollback is performed.
168 pub fn transaction_mut_ok<R: Send>(
169 &self,
170 f: impl Send + FnOnce(&'static mut Transaction<S>) -> R,
171 ) -> R {
172 self.transaction_mut(|txn| Ok::<R, Infallible>(f(txn)))
173 .unwrap()
174 }
175
176 /// Create a new [rusqlite::Connection] to the database.
177 ///
178 /// You can do (almost) anything you want with this connection as it is almost completely isolated from all other
179 /// [rust_query] connections. The only thing you should not do here is changing the schema.
180 /// Schema changes are detected with the `schema_version` pragma and will result in a panic when creating a new
181 /// [rust_query] transaction.
182 ///
183 /// The `foreign_keys` pragma is always enabled here, even if [crate::migrate::ForeignKeys::SQLite] is not used.
184 pub fn rusqlite_connection(&self) -> rusqlite::Connection {
185 use r2d2::ManageConnection;
186 let conn = self.manager.connect().unwrap();
187 conn.pragma_update(None, "foreign_keys", "ON").unwrap();
188 conn
189 }
190}
191
192/// [Transaction] can be used to query and update the database.
193///
194/// From the perspective of a [Transaction] each other [Transaction] is fully applied or not at all.
195/// Futhermore, the effects of [Transaction]s have a global order.
196/// So if we have mutations `A` and then `B`, it is impossible for a [Transaction] to see the effect of `B` without seeing the effect of `A`.
197pub struct Transaction<S> {
198 pub(crate) _p2: PhantomData<S>,
199 pub(crate) _local: PhantomData<*const ()>,
200}
201
202impl<S> Transaction<S> {
203 pub(crate) fn new() -> Self {
204 Self {
205 _p2: PhantomData,
206 _local: PhantomData,
207 }
208 }
209}
210
211impl<S: Schema> Transaction<S> {
212 /// This will check the schema version and panic if it is not as expected
213 pub(crate) fn new_checked(txn: OwnedTransaction, expected: &AtomicI64) -> &'static mut Self {
214 let schema_version = schema_version(txn.get());
215 // If the schema version is not the expected version then we
216 // check if the changes are acceptable.
217 if schema_version != expected.load(std::sync::atomic::Ordering::Relaxed) {
218 if user_version(txn.get()).unwrap() != S::VERSION {
219 panic!("The database user_version changed unexpectedly")
220 }
221
222 TXN.set(Some(txn));
223 check_schema::<S>();
224 expected.store(schema_version, std::sync::atomic::Ordering::Relaxed);
225 } else {
226 TXN.set(Some(txn));
227 }
228
229 const {
230 assert!(size_of::<Self>() == 0);
231 }
232 // no memory is leaked because Self is zero sized
233 Box::leak(Box::new(Self::new()))
234 }
235}
236
237impl<S> Transaction<S> {
238 /// Execute a query with multiple results.
239 ///
240 /// ```
241 /// # use rust_query::{private::doctest::*};
242 /// # get_txn(|txn| {
243 /// let user_names = txn.query(|rows| {
244 /// let user = rows.join(User);
245 /// rows.into_vec(&user.name)
246 /// });
247 /// assert_eq!(user_names, vec!["Alice".to_owned()]);
248 /// # });
249 /// ```
250 pub fn query<F, R>(&self, f: F) -> R
251 where
252 F: for<'inner> FnOnce(&mut Query<'inner, S>) -> R,
253 {
254 // Execution already happens in a [Transaction].
255 // and thus any [TransactionMut] that it might be borrowed
256 // from is borrowed immutably, which means the rows can not change.
257
258 TXN.with_borrow(|txn| {
259 let conn = txn.as_ref().unwrap().get();
260 let q = Rows {
261 phantom: PhantomData,
262 ast: Default::default(),
263 _p: PhantomData,
264 };
265 f(&mut Query {
266 q,
267 phantom: PhantomData,
268 conn,
269 })
270 })
271 }
272
273 /// Retrieve a single result from the database.
274 ///
275 /// ```
276 /// # use rust_query::{private::doctest::*, IntoExpr};
277 /// # rust_query::private::doctest::get_txn(|txn| {
278 /// let res = txn.query_one("test".into_expr());
279 /// assert_eq!(res, "test");
280 /// # });
281 /// ```
282 ///
283 /// Instead of using [Self::query_one] in a loop, it is better to
284 /// call [Self::query] and return all results at once.
285 pub fn query_one<O: 'static>(&self, val: impl IntoSelect<'static, S, Out = O>) -> O {
286 self.query(|e| e.into_iter(val.into_select()).next().unwrap())
287 }
288}
289
290impl<S: 'static> Transaction<S> {
291 /// Try inserting a value into the database.
292 ///
293 /// Returns [Ok] with a reference to the new inserted value or an [Err] with conflict information.
294 /// The type of conflict information depends on the number of unique constraints on the table:
295 /// - 0 unique constraints => [Infallible]
296 /// - 1 unique constraint => [Expr] reference to the conflicting table row.
297 /// - 2+ unique constraints => `()` no further information is provided.
298 ///
299 /// ```
300 /// # use rust_query::{private::doctest::*, IntoExpr};
301 /// # rust_query::private::doctest::get_txn(|mut txn| {
302 /// let res = txn.insert(User {
303 /// name: "Bob",
304 /// });
305 /// assert!(res.is_ok());
306 /// let res = txn.insert(User {
307 /// name: "Bob",
308 /// });
309 /// assert!(res.is_err(), "there is a unique constraint on the name");
310 /// # });
311 /// ```
312 pub fn insert<T: Table<Schema = S>>(
313 &mut self,
314 val: impl TableInsert<T = T>,
315 ) -> Result<TableRow<T>, T::Conflict> {
316 try_insert_private(T::NAME.into_table_ref(), None, val.into_insert())
317 }
318
319 /// This is a convenience function to make using [Transaction::insert]
320 /// easier for tables without unique constraints.
321 ///
322 /// The new row is added to the table and the row reference is returned.
323 pub fn insert_ok<T: Table<Schema = S, Conflict = Infallible>>(
324 &mut self,
325 val: impl TableInsert<T = T>,
326 ) -> TableRow<T> {
327 let Ok(row) = self.insert(val);
328 row
329 }
330
331 /// This is a convenience function to make using [Transaction::insert]
332 /// easier for tables with exactly one unique constraints.
333 ///
334 /// The new row is inserted and the reference to the row is returned OR
335 /// an existing row is found which conflicts with the new row and a reference
336 /// to the conflicting row is returned.
337 ///
338 /// ```
339 /// # use rust_query::{private::doctest::*, IntoExpr};
340 /// # rust_query::private::doctest::get_txn(|mut txn| {
341 /// let bob = txn.insert(User {
342 /// name: "Bob",
343 /// }).unwrap();
344 /// let bob2 = txn.find_or_insert(User {
345 /// name: "Bob", // this will conflict with the existing row.
346 /// });
347 /// assert_eq!(bob, bob2);
348 /// # });
349 /// ```
350 pub fn find_or_insert<T: Table<Schema = S, Conflict = TableRow<T>>>(
351 &mut self,
352 val: impl TableInsert<T = T>,
353 ) -> TableRow<T> {
354 match self.insert(val) {
355 Ok(row) => row,
356 Err(row) => row,
357 }
358 }
359
360 /// Try updating a row in the database to have new column values.
361 ///
362 /// Updating can fail just like [Transaction::insert] because of unique constraint conflicts.
363 /// This happens when the new values are in conflict with an existing different row.
364 ///
365 /// When the update succeeds, this function returns [Ok], when it fails it returns [Err] with one of
366 /// three conflict types:
367 /// - 0 unique constraints => [Infallible]
368 /// - 1 unique constraint => [Expr] reference to the conflicting table row.
369 /// - 2+ unique constraints => `()` no further information is provided.
370 ///
371 /// ```
372 /// # use rust_query::{private::doctest::*, IntoExpr, Update};
373 /// # rust_query::private::doctest::get_txn(|mut txn| {
374 /// let bob = txn.insert(User {
375 /// name: "Bob",
376 /// }).unwrap();
377 /// txn.update(bob, User {
378 /// name: Update::set("New Bob"),
379 /// }).unwrap();
380 /// # });
381 /// ```
382 pub fn update<T: Table<Schema = S>>(
383 &mut self,
384 row: impl IntoExpr<'static, S, Typ = T>,
385 val: T::Update,
386 ) -> Result<(), T::Conflict> {
387 let mut id = ValueBuilder::default();
388 let row = row.into_expr();
389 let (id, _) = id.simple_one(DynTypedExpr::erase(&row));
390
391 let val = T::apply_try_update(val, row);
392 let mut reader = Reader::default();
393 T::read(&val, &mut reader);
394 let (col_names, col_exprs): (Vec<_>, Vec<_>) = reader.builder.into_iter().collect();
395
396 let (select, col_fields) = ValueBuilder::default().simple(col_exprs);
397 let cte = CommonTableExpression::new()
398 .query(select)
399 .columns(col_fields.clone())
400 .table_name(Alias::new("cte"))
401 .to_owned();
402 let with_clause = WithClause::new().cte(cte).to_owned();
403
404 let mut update = UpdateStatement::new()
405 .table(("main", T::NAME))
406 .cond_where(Expr::col(("main", T::NAME, T::ID)).in_subquery(id))
407 .to_owned();
408
409 for (name, field) in zip(col_names, col_fields) {
410 let select = SelectStatement::new()
411 .from(Alias::new("cte"))
412 .column(field)
413 .to_owned();
414 let value = sea_query::Expr::SubQuery(
415 None,
416 Box::new(sea_query::SubQueryStatement::SelectStatement(select)),
417 );
418 update.value(Alias::new(name), value);
419 }
420
421 let (query, args) = update.with(with_clause).build_rusqlite(SqliteQueryBuilder);
422
423 TXN.with_borrow(|txn| {
424 let txn = txn.as_ref().unwrap().get();
425
426 let mut stmt = txn.prepare_cached(&query).unwrap();
427 match stmt.execute(&*args.as_params()) {
428 Ok(1) => Ok(()),
429 Ok(n) => panic!("unexpected number of updates: {n}"),
430 Err(rusqlite::Error::SqliteFailure(kind, Some(_val)))
431 if kind.code == ErrorCode::ConstraintViolation =>
432 {
433 // val looks like "UNIQUE constraint failed: playlist_track.playlist, playlist_track.track"
434 Err(T::get_conflict_unchecked(self, &val))
435 }
436 Err(err) => panic!("{err:?}"),
437 }
438 })
439 }
440
441 /// This is a convenience function to use [Transaction::update] for updates
442 /// that can not cause unique constraint violations.
443 ///
444 /// This method can be used for all tables, it just does not allow modifying
445 /// columns that are part of unique constraints.
446 pub fn update_ok<T: Table<Schema = S>>(
447 &mut self,
448 row: impl IntoExpr<'static, S, Typ = T>,
449 val: T::UpdateOk,
450 ) {
451 match self.update(row, T::update_into_try_update(val)) {
452 Ok(val) => val,
453 Err(_) => {
454 unreachable!("update can not fail")
455 }
456 }
457 }
458
459 /// Convert the [Transaction] into a [TransactionWeak] to allow deletions.
460 pub fn downgrade(&'static mut self) -> &'static mut TransactionWeak<S> {
461 // TODO: clean this up
462 Box::leak(Box::new(TransactionWeak { inner: PhantomData }))
463 }
464}
465
466/// This is the weak version of [Transaction].
467///
468/// The reason that it is called `weak` is because [TransactionWeak] can not guarantee
469/// that [TableRow]s prove the existence of their particular row.
470///
471/// [TransactionWeak] is useful because it allowes deleting rows.
472pub struct TransactionWeak<S> {
473 inner: PhantomData<Transaction<S>>,
474}
475
476impl<S: Schema> TransactionWeak<S> {
477 /// Try to delete a row from the database.
478 ///
479 /// This will return an [Err] if there is a row that references the row that is being deleted.
480 /// When this method returns [Ok] it will contain a [bool] that is either
481 /// - `true` if the row was just deleted.
482 /// - `false` if the row was deleted previously in this transaction.
483 pub fn delete<T: Table<Schema = S>>(&mut self, val: TableRow<T>) -> Result<bool, T::Referer> {
484 let schema = crate::hash::Schema::new::<S>();
485
486 // This is a manual check that foreign key constraints are not violated.
487 // We do this manually because we don't want to enabled foreign key constraints for the whole
488 // transaction (and is not possible to enable for part of a transaction).
489 let mut checks = vec![];
490 for (table_name, table) in &*schema.tables {
491 for col in table.columns.iter().filter_map(|col| {
492 col.fk
493 .as_ref()
494 .is_some_and(|(t, c)| t == T::NAME && c == T::ID)
495 .then_some(&col.name)
496 }) {
497 let stmt = SelectStatement::new()
498 .expr(
499 val.in_subquery(
500 SelectStatement::new()
501 .from(Alias::new(table_name))
502 .column(Alias::new(col))
503 .take(),
504 ),
505 )
506 .take();
507 checks.push(stmt.build_rusqlite(SqliteQueryBuilder));
508 }
509 }
510
511 let stmt = DeleteStatement::new()
512 .from_table(("main", T::NAME))
513 .cond_where(Expr::col(("main", T::NAME, T::ID)).eq(val.inner.idx))
514 .take();
515
516 let (query, args) = stmt.build_rusqlite(SqliteQueryBuilder);
517
518 TXN.with_borrow(|txn| {
519 let txn = txn.as_ref().unwrap().get();
520
521 for (query, args) in checks {
522 let mut stmt = txn.prepare_cached(&query).unwrap();
523 match stmt.query_one(&*args.as_params(), |r| r.get(0)) {
524 Ok(true) => return Err(T::get_referer_unchecked()),
525 Ok(false) => {}
526 Err(err) => panic!("{err:?}"),
527 }
528 }
529
530 let mut stmt = txn.prepare_cached(&query).unwrap();
531 match stmt.execute(&*args.as_params()) {
532 Ok(0) => Ok(false),
533 Ok(1) => Ok(true),
534 Ok(n) => {
535 panic!("unexpected number of deletes {n}")
536 }
537 Err(err) => panic!("{err:?}"),
538 }
539 })
540 }
541
542 /// Delete a row from the database.
543 ///
544 /// This is the infallible version of [TransactionWeak::delete].
545 ///
546 /// To be able to use this method you have to mark the table as `#[no_reference]` in the schema.
547 pub fn delete_ok<T: Table<Referer = Infallible, Schema = S>>(
548 &mut self,
549 val: TableRow<T>,
550 ) -> bool {
551 let Ok(res) = self.delete(val);
552 res
553 }
554
555 /// This allows you to do (almost) anything you want with the internal [rusqlite::Transaction].
556 ///
557 /// Note that there are some things that you should not do with the transaction, such as:
558 /// - Changes to the schema, these will result in a panic as described in [Database].
559 /// - Making changes that violate foreign-key constraints (see below).
560 ///
561 /// Sadly it is not possible to enable (or disable) the `foreign_keys` pragma during a transaction.
562 /// This means that whether this pragma is enabled depends on which [crate::migrate::ForeignKeys]
563 /// option is used and can not be changed.
564 pub fn rusqlite_transaction<R>(&mut self, f: impl FnOnce(&rusqlite::Transaction) -> R) -> R {
565 TXN.with_borrow(|txn| f(txn.as_ref().unwrap().get()))
566 }
567}
568
569pub fn try_insert_private<T: Table>(
570 table: sea_query::TableRef,
571 idx: Option<i64>,
572 val: T::Insert,
573) -> Result<TableRow<T>, T::Conflict> {
574 let mut reader = Reader::default();
575 T::read(&val, &mut reader);
576 if let Some(idx) = idx {
577 reader.col(T::ID, idx);
578 }
579 let (col_names, col_exprs): (Vec<_>, Vec<_>) = reader.builder.into_iter().collect();
580 let is_empty = col_names.is_empty();
581
582 let (select, _) = ValueBuilder::default().simple(col_exprs);
583
584 let mut insert = InsertStatement::new();
585 insert.into_table(table);
586 insert.columns(col_names.into_iter().map(Alias::new));
587 if is_empty {
588 // select always has at least one column, so we leave it out when there are no columns
589 insert.or_default_values();
590 } else {
591 insert.select_from(select).unwrap();
592 }
593 insert.returning_col(T::ID);
594
595 let (sql, values) = insert.build_rusqlite(SqliteQueryBuilder);
596
597 TXN.with_borrow(|txn| {
598 let txn = txn.as_ref().unwrap().get();
599 track_stmt(txn, &sql, &values);
600
601 let mut statement = txn.prepare_cached(&sql).unwrap();
602 let mut res = statement
603 .query_map(&*values.as_params(), |row| {
604 Ok(TableRow::<T>::from_sql(row.get_ref(T::ID)?)?)
605 })
606 .unwrap();
607
608 match res.next().unwrap() {
609 Ok(id) => Ok(id),
610 Err(rusqlite::Error::SqliteFailure(kind, Some(_val)))
611 if kind.code == ErrorCode::ConstraintViolation =>
612 {
613 // val looks like "UNIQUE constraint failed: playlist_track.playlist, playlist_track.track"
614 Err(T::get_conflict_unchecked(&Transaction::new(), &val))
615 }
616 Err(err) => panic!("{err:?}"),
617 }
618 })
619}