1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
// TODO(version: v1.0.0): license/author header project-wide, see MIT guidelines
#![warn(clippy::pedantic)]
#![warn(clippy::nursery)]

extern crate nalgebra as na;
use std::ops::Index;

pub use num_complex;
pub use num_traits;

use num_complex::Complex;
use num_traits::{One, Zero};

/// A more convenient way to write `Complex::new(...)`.
///
/// # Examples
///
/// ```
/// use rust_poly::complex;
/// use num_complex::Complex;
///
/// let c1: Complex<f32> = complex!();
/// let c2 = Complex::new(0.0, 0.0);
/// let c3 = complex!(1.0f32, 2.0);
/// let c4 = Complex::new(1.0, 2.0);
///
/// assert_eq!(c1, c2);
/// assert_eq!(c3, c4);
/// ```
#[macro_export]
macro_rules! complex {
    () => {{
        <$crate::num_complex::Complex<_> as $crate::num_traits::Zero>::zero()
    }};
    ($re:expr, $im: expr) => {{
        $crate::num_complex::Complex::new($re, $im)
    }};
}

/// A more convenient way of writing `Poly::new(&[Complex::new(...)...])`
///
/// It takes ownership of its arguments.
///
/// It can take a list of `Scalar` or `Complex<Scalar>`. If left empty, it is
/// equivalent to `Poly::zero()`.
///
/// # Examples
///
/// Basic syntax
/// ```
/// use rust_poly::{poly, Poly};
/// use num_traits::Zero;
/// use num_complex::Complex;
///
/// let p1: Poly<f32> = poly![];
/// let p2 = poly![1.0f32, 2.0, 3.0];
/// let p3 = poly![Complex::from(1.0), Complex::from(2.0), Complex::from(3.0)];
///
/// assert_eq!(p1, Poly::zero());
/// assert_eq!(p2, p3);
/// ```
///
/// Similarly to `vec!`, you can initialize a large polynomial where all coefficients
/// are equal like so:
/// ```
/// # use rust_poly::{poly, Poly};
/// use num_complex::Complex;
///
/// let p1 = poly![2.0; 16];
/// let p2 = poly![Complex::from(2.0); 16];
///
/// assert_eq!(p1, p2);
/// ```
///
/// You can also express complex numbers as a tuple of two scalars, mixing and matching
/// this syntax with the other syntax rules:
/// ```
/// use rust_poly::{poly, Poly};
/// use num_complex::Complex;
///
/// let p1 = poly![(1.0, 2.0), (1.0, 2.0)];
/// let p2 = poly![(1.0, 2.0); 2];
/// let p3 = poly![Complex::new(1.0, 2.0); 2];
/// let p4 = poly![Complex::new(1.0, 2.0), Complex::new(1.0, 2.0)];
///
/// assert_eq!(p1, p2);
/// assert_eq!(p1, p3);
/// assert_eq!(p1, p4);
/// ```
#[macro_export]
macro_rules! poly {
    () => {{
        $crate::Poly::zero()
    }};
    (($re:expr, $im:expr); $n:expr) => {{
        $crate::Poly::from(vec![$crate::complex!($re, $im); $n])
    }};
    ($elem:expr; $n:expr) => {{
        $crate::Poly::from(vec![$elem; $n])
    }};
    ($(($re:expr, $im:expr)),+ $(,)?) => {{
        $crate::Poly::from(vec![$($crate::complex!($re, $im)),*])
    }};
    ($($elems:expr),+ $(,)?) => {{
        $crate::Poly::from(vec![$($elems),*])
    }};
}

mod scalar;
pub use scalar::Scalar;

mod complex_util;
use complex_util::{c_neg, complex_sort_mut};
mod impl_num;
mod linalg_util;

#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Poly<T: Scalar>(na::DVector<Complex<T>>);

impl<T: Scalar> Poly<T> {
    pub fn new(coeffs: &[Complex<T>]) -> Self {
        Self(na::DVector::from_row_slice(coeffs)).normalize()
    }

    /// The same as `Poly::new()`
    pub fn from_complex_slice(value: &[Complex<T>]) -> Self {
        Self::new(value)
    }

    #[allow(clippy::needless_pass_by_value)]
    #[must_use]
    pub fn from_complex_vec(value: Vec<Complex<T>>) -> Self {
        Self::new(value.as_slice())
    }

    pub fn from_real_slice(value: &[T]) -> Self {
        let temp_vec: Vec<_> = value.iter().map(Complex::from).collect();
        Self::new(&temp_vec)
    }

    #[allow(clippy::needless_pass_by_value)]
    #[must_use]
    pub fn from_real_vec(value: Vec<T>) -> Self {
        Self::from(value.as_slice())
    }

    /// Monic polynomial from its complex roots.
    ///
    /// # Examples
    /// ```
    /// use rust_poly::Poly;
    /// use num_complex::Complex;
    /// use num_traits::{Zero, One};
    ///
    /// let p = Poly::from_roots(&[Complex::new(-1.0, 0.0), Complex::zero(), Complex::one()]);
    /// assert_eq!(p, Poly::new(&[Complex::zero(), Complex::new(-1.0, 0.0), Complex::zero(), Complex::one()]))
    /// ```
    #[must_use]
    pub fn from_roots(roots: &[Complex<T>]) -> Self {
        if roots.is_empty() {
            return Self::one();
        }

        let mut roots: na::DVector<Complex<T>> = na::DVector::from_column_slice(roots);
        complex_sort_mut(&mut roots);

        roots
            .as_slice()
            .iter()
            .map(|e| Self::line(c_neg(e.clone()), Complex::<T>::one()))
            .fold(Self::one(), |acc, x| acc * x)
            .normalize()
    }

    /// Linear function as a polynomial.
    ///
    /// # Examples
    /// ```
    /// use rust_poly::Poly;
    /// use num_complex::Complex;
    /// use num_traits::{One, Zero};
    ///
    /// assert_eq!(Poly::line(Complex::one(), Complex::new(-1.0, 0.0)).eval_point(Complex::one()), Complex::zero());
    /// ```
    pub fn line(offset: Complex<T>, slope: Complex<T>) -> Self {
        if slope.is_zero() {
            return Self::new(&[offset]);
        }
        Self::new(&[offset, slope])
    }

    /// Line between two points with complex coordinates.
    ///
    /// Note that the points are determined by two complex numbers, so they are
    /// in a four dimensional space. Leave the imaginary component as zero for lines
    /// in a 2D plane.
    ///
    /// # Examples
    /// ```
    /// use rust_poly::Poly;
    /// use num_complex::Complex;
    /// use num_traits::{One, Zero};
    ///
    /// let p1 = (Complex::new(-1.0, 0.0), Complex::new(2.0, 0.0));
    /// let p2 = (Complex::new(2.0, 0.0), Complex::new(-1.0, 0.0));
    ///
    /// assert_eq!(Poly::line_from_points(p1, p2).eval_point(Complex::one()), Complex::zero());
    /// ```
    pub fn line_from_points(p1: (Complex<T>, Complex<T>), p2: (Complex<T>, Complex<T>)) -> Self {
        let slope = (p2.1 - p1.1.clone()) / (p2.0 - p1.0.clone());
        let offset = p1.1 - slope.clone() * p1.0;
        Self::line(offset, slope)
    }

    /// Create a polynomial from a single term (coefficient + degree)
    ///
    /// # Examples
    /// ```
    /// use rust_poly::{poly, Poly};
    /// use num_complex::Complex;
    /// use num_traits::One;
    ///
    /// assert_eq!(Poly::term(Complex::one(), 3), poly![0.0, 0.0, 0.0, 1.0]);
    /// ```
    pub fn term(coeff: Complex<T>, degree: u32) -> Self {
        Self::line(Complex::zero(), coeff).pow(degree)
    }

    /// Get the nth term of the polynomial as a new polynomial
    ///
    /// Will return None if out of bounds.
    ///
    /// # Examples
    /// ```
    /// use rust_poly::{poly, Poly};
    /// use num_complex::Complex;
    /// use num_traits::One;
    ///
    /// let p  = poly![1.0, 2.0, 3.0];
    /// assert_eq!(p.get_term(1).unwrap(), poly![0.0, 2.0]);
    /// ```
    #[must_use]
    pub fn get_term(&self, degree: u32) -> Option<Self> {
        if degree as usize >= self.len_raw() {
            return None;
        }
        Some(Self::term(self[degree as usize].clone(), degree))
    }

    /// Get the nth [chebyshev polynomial](https://en.wikipedia.org/wiki/Chebyshev_polynomials)
    ///
    /// ```
    /// use rust_poly::{poly, Poly};
    ///
    /// assert_eq!(Poly::cheby(2), poly![-1.0, 0.0, 2.0]);
    /// assert_eq!(Poly::cheby(3), poly![0.0, -3.0, 0.0, 4.0]);
    /// assert_eq!(Poly::cheby(4), poly![1.0, 0.0, -8.0, 0.0, 8.0])
    /// ```
    #[must_use]
    pub fn cheby(n: usize) -> Self {
        // TODO: make the first 32-ish explicit for performance
        match n {
            0 => poly![T::one()],
            1 => poly![T::zero(), T::one()],
            _ => poly![T::zero(), T::one() + T::one()] * Self::cheby(n - 1) - Self::cheby(n - 2),
        }
    }

    fn len_raw(&self) -> usize {
        self.0.len()
    }

    #[must_use]
    pub fn len(&self) -> usize {
        self.normalize().len_raw()
    }

    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    fn is_normalized(&self) -> bool {
        let n = self.len_raw();
        if n == 0 {
            return true;
        }
        !self.0.index(n - 1).is_zero()
    }

    fn normalize(&self) -> Self {
        if self.len_raw() == 0 {
            return self.clone();
        }
        let mut end = self.len_raw();
        loop {
            if end == 0 {
                return Self::zero();
            }
            if !self.0.as_slice()[end - 1].is_zero() {
                break;
            }
            end -= 1;
        }
        let ret = Self(na::DVector::from_column_slice(&self.0.as_slice()[0..end]));

        // post-condition: polynomial is now normalized
        debug_assert!(ret.is_normalized());
        ret
    }

    /// Evaluate the polynomial at a single value of `x`.
    ///
    /// ```
    /// use rust_poly::Poly;
    /// use num_complex::Complex;
    ///
    /// let p = Poly::new(&[Complex::new(1.0, 0.0), Complex::new(2.0, 0.0), Complex::new(3.0, 0.0)]);
    /// let x = Complex::new(1.0, 0.0);
    /// assert_eq!(p.eval_point(x), Complex::new(6.0, 0.0));
    /// ```
    pub fn eval_point(&self, x: Complex<T>) -> Complex<T> {
        self.eval(&na::DMatrix::<_>::from_row_slice(1, 1, &[x]))[0].clone()
    }

    /// Evaluate the polynomial for each entry of a matrix.
    #[must_use]
    pub fn eval(&self, x: &na::DMatrix<Complex<T>>) -> na::DMatrix<Complex<T>> {
        let mut c0: na::DMatrix<_> = na::DMatrix::<_>::from_element(
            x.nrows(),
            x.ncols(),
            self.0[self.len_raw() - 1].clone(),
        );
        for i in 2..=self.len_raw() {
            c0 *= x.clone();
            c0.apply(|c| *c = (*c).clone() + &self.0[self.len_raw() - i]);
        }
        c0
    }

    /// Raises a polynomial to an integer power.
    ///
    /// ```
    /// use rust_poly::{poly, Poly};
    /// use num_complex::Complex;
    ///
    /// assert_eq!(poly![1.0, 2.0, 3.0].pow(2), poly![1.0, 4.0, 10.0, 12.0, 9.0]);
    /// ```
    #[must_use]
    pub fn pow(&self, pow: u32) -> Self {
        self.pow_usize(pow as usize)
    }

    #[must_use]
    pub fn pow_usize(&self, pow: usize) -> Self {
        // invariant: poly is normalized
        debug_assert!(self.is_normalized());

        if pow == 0 {
            return Self::one();
        }

        if pow == 1 {
            return self.clone();
        }

        // TODO: divide and conquer with powers of 2
        let mut res = self.clone();
        for _ in 2..=pow {
            res = res * self;
        }
        res.normalize()
    }

    fn companion(&self) -> na::DMatrix<Complex<T>> {
        // invariant: poly is normalized
        debug_assert!(self.is_normalized());

        // pre-condition: poly has degree 1 or more
        assert!(
            self.len_raw() >= 2,
            "polynomials of degree 0 or less do not have a companion matrix"
        );

        if self.len_raw() == 2 {
            return na::DMatrix::from_row_slice(
                1,
                1,
                &[c_neg(self.0[0].clone()) / self.0[1].clone()],
            );
        }

        let n = self.len_raw() - 1;
        let mut mat: na::DMatrix<Complex<T>> = na::DMatrix::<Complex<T>>::zeros(n, n);

        // fill sub-diagonal with 1
        mat.view_mut((1, 0), (n - 1, n - 1))
            .fill_diagonal(Complex::<T>::one());

        // fill the rightmost column with the coefficients of the associated
        // monic polynomial
        let monic = self
            .0
            .view((0, 0), (n, 1))
            .map(|x| c_neg(x) / self.0[n].clone());
        for i in 0..n {
            mat.column_mut(n - 1)[i] = monic[i].clone();
        }
        mat
    }

    /// Find the roots of a polynomial numerically.
    ///
    /// # Examples
    /// ```
    /// use rust_poly::{poly, Poly};
    /// use rust_poly::num_complex::Complex;
    ///
    /// let p: Poly<f64> = poly![-6.0, 11.0, -6.0, 1.0];
    /// let expected_roots = &[Complex::new(1.0, 0.0), Complex::new(2.0, 0.0), Complex::new(3.0, 0.0)];
    /// let temp = p.roots();    // Rust is really annoying sometimes...
    /// let calculated_roots = temp.as_slice();
    ///
    /// // assert almost equal
    /// assert!((expected_roots[0] - calculated_roots[0]).re.abs() < 0.000001);
    /// assert!((expected_roots[1] - calculated_roots[1]).re.abs() < 0.000001);
    /// assert!((expected_roots[2] - calculated_roots[2]).re.abs() < 0.000001);
    /// ```
    #[must_use]
    pub fn roots(&self) -> na::DVector<Complex<T>> {
        // invariant: polynomial is normalized
        debug_assert!(self.is_normalized());

        if self.len_raw() < 2 {
            return na::dvector![];
        }

        if self.len_raw() == 2 {
            return na::dvector![c_neg(self.0[0].clone()) / self.0[1].clone()];
        }

        // rotated companion matrix reduces error
        let mut comp = self.companion();
        let n = comp.shape().0;
        for i in 0..n / 2 {
            comp.swap_rows(i, n - i - 1);
            comp.swap_columns(i, n - i - 1);
        }

        let mut r: na::DVector<Complex<T>> = comp.eigenvalues().expect("infallible");
        complex_sort_mut(&mut r);
        r
    }

    /// Compose two polynomials, returning a new polynomial.
    ///
    /// Substitute the given polynomial `x` into `self` and expand the
    /// result into a new polynomial.
    ///
    /// # Examples
    ///
    /// ```
    /// use rust_poly::Poly;
    /// use num_complex::Complex;
    /// use num_traits::One;
    ///
    /// let f = Poly::new(&[Complex::new(1.0, 0.0), Complex::new(2.0, 0.0)]);
    /// let g = Poly::one();
    ///
    /// assert_eq!(f.compose(g), f);
    #[must_use]
    pub fn compose(&self, x: Self) -> Self {
        // invariant: polynomials are normalized
        debug_assert!(self.is_normalized());
        debug_assert!(x.is_normalized());

        // TODO begin: are these checks actually making things faster?
        if self.is_zero() || x.is_zero() {
            return Self::zero();
        }

        if self.is_one() {
            return x;
        }

        if x.is_one() {
            return self.clone();
        }
        // end

        (0..self.len_raw())
            .map(|i| Self::new(&[self.0[i].clone()]) * x.pow_usize(i))
            .sum()
    }

    /// Calculate the quotient and remainder uwing long division. More efficient than
    /// calculating them separately.
    ///
    /// # Panics
    /// Panics if a division by zero is attempted
    ///
    /// # Examples
    /// ```
    /// use rust_poly::Poly;
    /// use num_complex::Complex;
    /// use num_traits::identities::One;
    ///
    /// let c1 = Poly::new(&[Complex::new(1.0, 0.0), Complex::new(2.0, 0.0), Complex::new(3.0, 0.0)]);
    /// let c2 = Poly::new(&[Complex::new(3.0, 0.0), Complex::new(2.0, 0.0), Complex::new(1.0, 0.0)]);
    /// let expected1 = (Poly::new(&[Complex::new(3.0, 0.0)]), Poly::new(&[Complex::new(-8.0, 0.0), Complex::new(-4.0, 0.0)]));
    /// assert_eq!(c1.clone().div_rem(&c2), expected1);
    /// ```
    #[allow(clippy::cast_sign_loss)]
    #[allow(clippy::cast_possible_wrap)]
    #[must_use]
    pub fn div_rem(self, rhs: &Self) -> (Self, Self) {
        // invariant: polynomials are normalized
        debug_assert!(self.is_normalized());
        debug_assert!(rhs.is_normalized());

        // pre-condition: don't divide by zero
        assert!(!rhs.is_zero(), "Attempted to divide a polynomial by zero");

        let lhs_len = self.len_raw();
        let rhs_len = self.len_raw();
        if lhs_len < rhs_len {
            return (Self::zero(), self);
        }
        if rhs_len == 1 {
            return (
                Self(self.0 / rhs.0[rhs.len_raw() - 1].clone()),
                Self::zero(),
            );
        }
        let len_delta = lhs_len - rhs_len;
        let scale = rhs.0[rhs.len_raw() - 1].clone();
        let rhs: na::DVector<_> = rhs
            .0
            .view_range(0..rhs.len_raw() - 1, 0..1)
            // HACK: this shouldn't be necessary, but nalgebra turns DVector into
            //       DMatrix when making a view, and needs to be politely reminded
            //       that this is a column vector.
            .column(0)
            .into();
        // TODO: useless clone of scale, it should be borrowed, but dvector does
        //       not implement Div<&_>
        let rhs: na::DVector<_> = rhs / scale.clone();
        let mut lhs: na::DVector<_> = self.0.clone();
        let mut i = len_delta as isize;
        let mut j = (lhs_len - 1) as isize;
        while i >= 0 {
            lhs.view_range_mut(i as usize..j as usize, 0..1)
                .iter_mut()
                .zip((rhs.clone() * self.0[j as usize].clone()).iter())
                .for_each(|p| *p.0 -= p.1);
            i -= 1;
            j -= 1;
        }
        (
            Self(
                (lhs.view_range(j as usize + 1..lhs.len(), 0..1) / scale)
                    .column(0)
                    .into(),
            )
            .normalize(),
            Self(lhs.view_range(..(j + 1) as usize, 0..1).column(0).into()).normalize(),
        )
    }
}

impl<T: Scalar> Index<usize> for Poly<T> {
    type Output = Complex<T>;

    fn index(&self, index: usize) -> &Self::Output {
        &self.0[index]
    }
}

impl<T: Scalar> From<&[Complex<T>]> for Poly<T> {
    fn from(value: &[Complex<T>]) -> Self {
        Self::from_complex_slice(value)
    }
}

impl<T: Scalar> From<Vec<Complex<T>>> for Poly<T> {
    fn from(value: Vec<Complex<T>>) -> Self {
        Self::from_complex_vec(value)
    }
}

impl<T: Scalar> From<&[T]> for Poly<T> {
    fn from(value: &[T]) -> Self {
        Self::from_real_slice(value)
    }
}

impl<T: Scalar> From<Vec<T>> for Poly<T> {
    fn from(value: Vec<T>) -> Self {
        Self::from_real_vec(value)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn macro_complex() {
        assert_eq!(complex!(), Complex::<f64>::zero());
        assert_eq!(complex!(1.0, 2.0), Complex::<f64>::new(1.0, 2.0));
    }

    #[test]
    fn macro_poly() {
        assert_eq!(poly!(), Poly::<f64>::zero());
        assert_eq!(poly!(1.0), Poly::<f64>::one());
        assert_eq!(
            poly!(1.0, 2.0, 3.0),
            Poly::<f64>::new(&[
                Complex::new(1.0, 0.0),
                Complex::new(2.0, 0.0),
                Complex::new(3.0, 0.0),
            ])
        );
        assert_eq!(poly!((1.0, 0.0)), Poly::<f64>::one());
        assert_eq!(
            poly!((1.0, 1.0), (2.0, 2.0), (3.0, 3.0)),
            Poly::<f64>::new(&[
                Complex::new(1.0, 1.0),
                Complex::new(2.0, 2.0),
                Complex::new(3.0, 3.0)
            ])
        );
        assert_eq!(
            poly!(2.0; 3),
            Poly::<f64>::new(&[
                Complex::new(2.0, 0.0),
                Complex::new(2.0, 0.0),
                Complex::new(2.0, 0.0)
            ])
        );
        assert_eq!(
            poly!((1.0, -1.0); 3),
            Poly::<f64>::new(&[
                Complex::new(1.0, -1.0),
                Complex::new(1.0, -1.0),
                Complex::new(1.0, -1.0)
            ])
        );
    }

    #[test]
    fn poly_new() {
        // trivial, but here for completeness
        Poly::new(&[Complex::new(2.0, -2.0)]);
    }

    #[test]
    fn poly_from_complex_slice() {
        let p = Poly::from_complex_slice(&[Complex::new(1.0, 2.0), Complex::new(3.0, 4.0)]);
        let e = poly!((1.0, 2.0), (3.0, 4.0));
        assert_eq!(p, e);
    }

    // TODO: test the rest of the "boring" functions

    #[test]
    fn poly_line() {
        let p = Poly::<f64>::line(Complex::<f64>::new(1.0, 0.0), Complex::<f64>::new(2.0, 0.0));
        let e = poly!(1.0, 2.0);
        assert_eq!(p, e);
    }
}