1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
use ndarray::{array, s, Array, Array1, ArrayView1, ArrayViewMut1, Axis, Dimension, ScalarOperand};
use num_traits::{Num, Zero};
use std::ops::{Add, Div, Mul, Rem, Sub};

mod scalar;
pub use scalar::Scalar;

/// polynomial as a list of coefficients of terms of descending degree
#[derive(Clone, PartialEq, Debug)]
pub struct Poly<T: Scalar>(Array1<T>);

impl<T: Scalar> Poly<T> {
    /// Create a new polynomial from a 1D array of coefficients
    pub fn new(coeffs: Array1<T>) -> Self {
        Self(coeffs).trim_zeros()
    }

    /// Creates a polynomial with a single term of degree `n`.
    ///
    /// ## Examples
    ///
    /// ```
    /// # use rust_poly::Poly;
    /// use ndarray::prelude::*;
    ///
    /// let t1 = Poly::term(1i32, 0);
    /// let t2 = Poly::term(2i32, 1);
    /// let t3 = Poly::term(3i32, 2);
    /// assert_eq!(t1, Poly::new(array![1]));
    /// assert_eq!(t2, Poly::new(array![2, 0]));
    /// assert_eq!(t3, Poly::new(array![3, 0, 0]));
    /// ```
    pub fn term(coeff: T, degree: usize) -> Self {
        let zeros: Array1<T> = Array1::<T>::zeros([degree]);
        let mut term: Array1<T> = array![coeff];
        term.append(Axis(0), zeros.view()).unwrap(); // TODO
        Self(term)
    }

    /// Checks whether the polynomial has leading zeros
    fn is_normalized(&self) -> bool {
        if self.raw_len() == 0 {
            return true;
        }
        !self.0[0].is_zero()
    }

    /// Removes leading zero coefficients
    fn trim_zeros(&self) -> Self {
        if self.is_normalized() {
            return self.clone();
        }
        let mut first: usize = 0;
        for e in &self.0 {
            if !e.is_zero() {
                break;
            }
            first += 1;
        }
        Self(self.0.slice(s![first..]).to_owned())
    }

    // TODO: trim in-place for better performance

    /// Length of the polynomial
    ///
    /// Note that this does not include leading zeros, as polynomials are
    /// stored in their normalized form internally.

    // internal NOTE: strictly speaking, polynomials are only normalized
    //     when necessary, but this *should* be invisible to the user
    pub fn len(&self) -> usize {
        self.trim_zeros().raw_len()
    }

    /// Length of the polynomial, without trimming zeros
    fn raw_len(&self) -> usize {
        self.0.len()
    }

    /// Evaluate a polynomial at a specific input value `x`. This may be an
    /// ndarray of any dimension
    ///
    /// ## Examples
    ///
    /// Evaluate a real polynomial at real points
    /// ```
    /// # use rust_poly::Poly;
    /// use ndarray::prelude::*;
    ///
    /// // x^2 + 2x + 1
    /// let p = Poly::new(array![1, 2, 1]);
    /// let x = array![-1, 0, 1];
    /// let y = p.eval(x);
    /// assert_eq!(y, array![0, 1, 4]);
    /// ```
    ///
    /// Evaluate a complex polynomial at complex points
    /// ```
    /// # use rust_poly::Poly;
    /// use ndarray::prelude::*;
    /// use num_complex::Complex64;
    ///
    /// // (2+i)x^2 + 2i
    /// let p = Poly::new(array![
    ///     Complex64::new(2.0, 1.0),
    ///     Complex64::new(0.0, 0.0),
    ///     Complex64::new(0.0, 2.0),
    /// ]);
    /// let x = array![Complex64::new(1.0, 0.0), Complex64::new(0.0, 1.0)];
    /// let y = p.eval(x);
    /// assert_eq!(y, array![Complex64::new(2.0, 3.0), Complex64::new(-2.0, 1.0)]);
    /// ```
    pub fn eval<D: Dimension>(&self, x: Array<T, D>) -> Array<T, D> {
        let mut y: Array<T, D> = Array::<T, D>::zeros(x.raw_dim());
        for pv in &self.0 {
            y = y * x.clone() + pv.clone();
        }
        y
    }

    /// Computes the quotient and remainder of a polynomial division
    ///
    /// ## Examples
    ///
    /// Divide two real polynomials
    ///
    /// ```
    /// # use rust_poly::Poly;
    /// use ndarray::prelude::*;
    ///
    /// let p1 = Poly::new(array![3.0, 5.0, 2.0]);
    /// let p2 = Poly::new(array![2.0, 1.0]);
    /// let (q, r) = p1.div_rem(p2);
    /// assert_eq!(q, Poly::new(array![1.5, 1.75]));
    /// assert_eq!(r, Poly::new(array![0.25]));
    /// ```
    ///
    /// Divide two complex polynomials
    ///
    /// ```
    /// # use rust_poly::Poly;
    /// use ndarray::prelude::*;
    /// use num_complex::Complex64;
    ///
    /// let p1 = Poly::term(Complex64::new(1.0, 1.0), 2);
    /// let p2 = Poly::term(Complex64::new(1.0, -1.0), 0);
    /// let (q, r) = p1.div_rem(p2);
    /// assert_eq!(q, Poly::term(Complex64::new(0.0, 1.0), 2));
    /// assert_eq!(r, Poly::new(array![]));
    /// ```
    ///
    pub fn div_rem(&self, rhs: Self) -> (Self, Self) {
        let u: Array1<T> = self.0.clone() + array![T::zero()];
        let v: Array1<T> = rhs.0 + array![T::zero()];
        let m = u.len() as isize - 1;
        let n = v.len() as isize - 1;
        let scale = T::one() / v[0].clone();
        let mut q: Array1<T> = Array1::zeros((m - n + 1).max(1) as usize);
        let mut r: Array1<T> = u.clone(); // TODO: useless assignment
        for k in 0..((m - n + 1) as usize) {
            let d = scale.clone() * r[k].clone();
            q[k] = d.clone();
            r.slice_mut(s![k..(k + n as usize + 1)])
                .iter_mut()
                .zip((array![d] * v.clone()).iter())
                .for_each(|p| *p.0 = p.0.clone() - p.1.clone());
        }
        dbg!(q.clone(), r.clone());
        (Self(q), Self(r).trim_zeros())
    }
}

impl<T: Scalar> Add for Poly<T> {
    type Output = Poly<T>;

    /// Add toghether two polynomials
    ///
    /// ## Examples
    /// Add polynomials of various lengths
    ///
    /// ```
    /// # use rust_poly::Poly;
    /// use ndarray::prelude::*;
    ///
    /// let p1 = Poly::new(array![1.0, 0.0]);
    /// let p2 = Poly::new(array![1.0]);
    /// assert_eq!(p1.clone() + p1.clone(), Poly::new(array![2.0, 0.0]));
    /// assert_eq!(p2.clone() + p1.clone(), Poly::new(array![1.0, 1.0]));
    /// assert_eq!(p1 + p2, Poly::new(array![1.0, 1.0]));
    /// ```
    ///
    /// Add three terms to form a polynomial
    ///
    /// ```
    /// # use rust_poly::Poly;
    /// use ndarray::prelude::*;
    ///
    /// let t1 = Poly::term(1, 0);
    /// let t2 = Poly::term(2, 1);
    /// let t3 = Poly::term(3, 2);
    /// let sum = t1 + t2 + t3;
    /// assert_eq!(sum, Poly::new(array![3, 2, 1]));
    /// ```
    fn add(self, rhs: Self) -> Self::Output {
        let len_delta = self.raw_len() as isize - rhs.raw_len() as isize;
        (if len_delta == 0 {
            Self(self.0 + rhs.0)
        } else if len_delta < 0 {
            let mut lhs: Array1<T> = Array1::<T>::zeros([len_delta.abs() as usize]);
            lhs.append(Axis(0), self.0.view()).unwrap(); // TODO
            Self(lhs + rhs.0)
        } else {
            let mut rhs_new: Array1<T> = Array1::<T>::zeros([len_delta as usize]);
            rhs_new.append(Axis(0), rhs.0.view()).unwrap(); // TODO
            Self(self.0 + rhs_new)
        })
        .trim_zeros()
    }
}

impl<T: Scalar> Sub for Poly<T> {
    type Output = Poly<T>;

    /// Subtract one polynomial from another
    ///
    /// ## Examples
    /// Subtract polynomials of various lengths
    ///
    /// ```
    /// # use rust_poly::Poly;
    /// use ndarray::prelude::*;
    ///
    /// let p1 = Poly::new(array![1.0, 0.0]);
    /// let p2 = Poly::new(array![1.0]);
    /// assert_eq!(p1.clone() - p1.clone(), Poly::new(array![]));
    /// assert_eq!(p2.clone() - p1.clone(), Poly::new(array![-1.0, 1.0]));
    /// assert_eq!(p1 - p2, Poly::new(array![1.0, -1.0]));
    /// ```
    fn sub(self, rhs: Self) -> Self::Output {
        let len_delta = self.raw_len() as isize - rhs.raw_len() as isize;
        (if len_delta == 0 {
            Self(self.0 - rhs.0)
        } else if len_delta < 0 {
            let mut lhs: Array1<T> = Array1::<T>::zeros([len_delta.abs() as usize]);
            lhs.append(Axis(0), self.0.view()).unwrap(); // TODO
            Self(lhs - rhs.0)
        } else {
            let mut rhs_new: Array1<T> = Array1::<T>::zeros([len_delta as usize]);
            rhs_new.append(Axis(0), rhs.0.view()).unwrap(); // TODO
            Self(self.0 - rhs_new)
        })
        .trim_zeros()
    }
}

impl<T: Scalar> Mul for Poly<T> {
    type Output = Poly<T>;

    /// Multiplies two polynomials together
    ///
    /// ## Examples
    ///
    /// Convolve two polynomials
    /// ```
    /// # use rust_poly::Poly;
    /// use ndarray::prelude::*;
    ///
    /// let p1 = Poly::new(array![1.0, 2.0, 3.0]);
    /// let p2 = Poly::new(array![9.0, 5.0, 1.0]);
    /// let prod = p1 * p2;
    /// assert_eq!(prod, Poly::new(array![9.0, 23.0, 38.0, 17.0, 3.0]));
    /// ```
    ///
    /// Scalar multiplication
    /// ```
    /// # use rust_poly::Poly;
    /// use ndarray::prelude::*;
    ///
    /// let p1 = Poly::term(3, 0);
    /// let p2 = Poly::new(array![1, 1]);
    /// let prod1 = p1.clone() * p2.clone();
    /// let prod2 = p2.clone() * p1.clone();
    /// assert_eq!(prod1, Poly::new(array![3, 3]));
    /// assert_eq!(prod2, Poly::new(array![3, 3]));
    /// ```
    fn mul(self, rhs: Self) -> Self::Output {
        Self(convolve_1d(self.0.view(), rhs.0.view())).trim_zeros()
    }
}

impl<T: Scalar> Div for Poly<T> {
    type Output = Poly<T>;

    /// Computes the quotient of two polynomials, truncating the remainder.
    ///
    /// See also `Poly::div_rem()`.
    fn div(self, rhs: Self) -> Self::Output {
        self.div_rem(rhs).0
    }
}

impl<T: Scalar> Rem for Poly<T> {
    type Output = Poly<T>;

    /// Computes the remainder of the division of two polynomials.
    ///
    /// See also `Poly::div_rem()`.
    fn rem(self, rhs: Self) -> Self::Output {
        self.div_rem(rhs).1
    }
}

// TODO: this is a slightly modified version of a ChatGPT 3.5 answer,
//     integrate it better by placing it inside `Poly::mul` and changing
//     the name of variables.
fn convolve_1d<T: Scalar>(input: ArrayView1<T>, kernel: ArrayView1<T>) -> Array1<T> {
    let input_len = input.len();
    let kernel_len = kernel.len();
    let output_len = input_len + kernel_len - 1;

    let mut output: Array1<T> = Array1::<T>::zeros([output_len]);

    for i in 0..output_len {
        let mut sum = T::zero();
        for j in 0..kernel_len {
            let k = i as isize - j as isize;
            if k >= 0 && k < input_len as isize {
                sum = sum.clone() + input[k as usize].clone() * kernel[j].clone();
            }
        }
        output[i] = sum;
    }

    output
}