1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
use ndarray::{array, s, Array, Array1, ArrayView1, ArrayViewMut1, Axis, Dimension, ScalarOperand};
use num_traits::{Num, Zero};
use std::ops::{Add, Div, Mul, Rem, Sub};
mod scalar;
pub use scalar::Scalar;
/// polynomial as a list of coefficients of terms of descending degree
#[derive(Clone, PartialEq, Debug)]
pub struct Poly<T: Scalar>(Array1<T>);
impl<T: Scalar> Poly<T> {
/// Create a new polynomial from a 1D array of coefficients
pub fn new(coeffs: Array1<T>) -> Self {
Self(coeffs).trim_zeros()
}
/// Creates a polynomial with a single term of degree `n`.
///
/// ## Examples
///
/// ```
/// # use rust_poly::Poly;
/// use ndarray::prelude::*;
///
/// let t1 = Poly::term(1i32, 0);
/// let t2 = Poly::term(2i32, 1);
/// let t3 = Poly::term(3i32, 2);
/// assert_eq!(t1, Poly::new(array![1]));
/// assert_eq!(t2, Poly::new(array![2, 0]));
/// assert_eq!(t3, Poly::new(array![3, 0, 0]));
/// ```
pub fn term(coeff: T, degree: usize) -> Self {
let zeros: Array1<T> = Array1::<T>::zeros([degree]);
let mut term: Array1<T> = array![coeff];
term.append(Axis(0), zeros.view()).unwrap(); // TODO
Self(term)
}
/// Checks whether the polynomial has leading zeros
fn is_normalized(&self) -> bool {
if self.raw_len() == 0 {
return true;
}
!self.0[0].is_zero()
}
/// Removes leading zero coefficients
fn trim_zeros(&self) -> Self {
if self.is_normalized() {
return self.clone();
}
let mut first: usize = 0;
for e in &self.0 {
if !e.is_zero() {
break;
}
first += 1;
}
Self(self.0.slice(s![first..]).to_owned())
}
// TODO: trim in-place for better performance
/// Length of the polynomial
///
/// Note that this does not include leading zeros, as polynomials are
/// stored in their normalized form internally.
// internal NOTE: strictly speaking, polynomials are only normalized
// when necessary, but this *should* be invisible to the user
pub fn len(&self) -> usize {
self.trim_zeros().raw_len()
}
/// Length of the polynomial, without trimming zeros
fn raw_len(&self) -> usize {
self.0.len()
}
/// Evaluate a polynomial at a specific input value `x`. This may be an
/// ndarray of any dimension
///
/// ## Examples
///
/// Evaluate a real polynomial at real points
/// ```
/// # use rust_poly::Poly;
/// use ndarray::prelude::*;
///
/// // x^2 + 2x + 1
/// let p = Poly::new(array![1, 2, 1]);
/// let x = array![-1, 0, 1];
/// let y = p.eval(x);
/// assert_eq!(y, array![0, 1, 4]);
/// ```
///
/// Evaluate a complex polynomial at complex points
/// ```
/// # use rust_poly::Poly;
/// use ndarray::prelude::*;
/// use num_complex::Complex64;
///
/// // (2+i)x^2 + 2i
/// let p = Poly::new(array![
/// Complex64::new(2.0, 1.0),
/// Complex64::new(0.0, 0.0),
/// Complex64::new(0.0, 2.0),
/// ]);
/// let x = array![Complex64::new(1.0, 0.0), Complex64::new(0.0, 1.0)];
/// let y = p.eval(x);
/// assert_eq!(y, array![Complex64::new(2.0, 3.0), Complex64::new(-2.0, 1.0)]);
/// ```
pub fn eval<D: Dimension>(&self, x: Array<T, D>) -> Array<T, D> {
let mut y: Array<T, D> = Array::<T, D>::zeros(x.raw_dim());
for pv in &self.0 {
y = y * x.clone() + pv.clone();
}
y
}
/// Computes the quotient and remainder of a polynomial division
///
/// ## Examples
///
/// Divide two real polynomials
///
/// ```
/// # use rust_poly::Poly;
/// use ndarray::prelude::*;
///
/// let p1 = Poly::new(array![3.0, 5.0, 2.0]);
/// let p2 = Poly::new(array![2.0, 1.0]);
/// let (q, r) = p1.div_rem(p2);
/// assert_eq!(q, Poly::new(array![1.5, 1.75]));
/// assert_eq!(r, Poly::new(array![0.25]));
/// ```
///
/// Divide two complex polynomials
///
/// ```
/// # use rust_poly::Poly;
/// use ndarray::prelude::*;
/// use num_complex::Complex64;
///
/// let p1 = Poly::term(Complex64::new(1.0, 1.0), 2);
/// let p2 = Poly::term(Complex64::new(1.0, -1.0), 0);
/// let (q, r) = p1.div_rem(p2);
/// assert_eq!(q, Poly::term(Complex64::new(0.0, 1.0), 2));
/// assert_eq!(r, Poly::new(array![]));
/// ```
///
pub fn div_rem(&self, rhs: Self) -> (Self, Self) {
let u: Array1<T> = self.0.clone() + array![T::zero()];
let v: Array1<T> = rhs.0 + array![T::zero()];
let m = u.len() as isize - 1;
let n = v.len() as isize - 1;
let scale = T::one() / v[0].clone();
let mut q: Array1<T> = Array1::zeros((m - n + 1).max(1) as usize);
let mut r: Array1<T> = u.clone(); // TODO: useless assignment
for k in 0..((m - n + 1) as usize) {
let d = scale.clone() * r[k].clone();
q[k] = d.clone();
r.slice_mut(s![k..(k + n as usize + 1)])
.iter_mut()
.zip((array![d] * v.clone()).iter())
.for_each(|p| *p.0 = p.0.clone() - p.1.clone());
}
dbg!(q.clone(), r.clone());
(Self(q), Self(r).trim_zeros())
}
}
impl<T: Scalar> Add for Poly<T> {
type Output = Poly<T>;
/// Add toghether two polynomials
///
/// ## Examples
/// Add polynomials of various lengths
///
/// ```
/// # use rust_poly::Poly;
/// use ndarray::prelude::*;
///
/// let p1 = Poly::new(array![1.0, 0.0]);
/// let p2 = Poly::new(array![1.0]);
/// assert_eq!(p1.clone() + p1.clone(), Poly::new(array![2.0, 0.0]));
/// assert_eq!(p2.clone() + p1.clone(), Poly::new(array![1.0, 1.0]));
/// assert_eq!(p1 + p2, Poly::new(array![1.0, 1.0]));
/// ```
///
/// Add three terms to form a polynomial
///
/// ```
/// # use rust_poly::Poly;
/// use ndarray::prelude::*;
///
/// let t1 = Poly::term(1, 0);
/// let t2 = Poly::term(2, 1);
/// let t3 = Poly::term(3, 2);
/// let sum = t1 + t2 + t3;
/// assert_eq!(sum, Poly::new(array![3, 2, 1]));
/// ```
fn add(self, rhs: Self) -> Self::Output {
let len_delta = self.raw_len() as isize - rhs.raw_len() as isize;
(if len_delta == 0 {
Self(self.0 + rhs.0)
} else if len_delta < 0 {
let mut lhs: Array1<T> = Array1::<T>::zeros([len_delta.abs() as usize]);
lhs.append(Axis(0), self.0.view()).unwrap(); // TODO
Self(lhs + rhs.0)
} else {
let mut rhs_new: Array1<T> = Array1::<T>::zeros([len_delta as usize]);
rhs_new.append(Axis(0), rhs.0.view()).unwrap(); // TODO
Self(self.0 + rhs_new)
})
.trim_zeros()
}
}
impl<T: Scalar> Sub for Poly<T> {
type Output = Poly<T>;
/// Subtract one polynomial from another
///
/// ## Examples
/// Subtract polynomials of various lengths
///
/// ```
/// # use rust_poly::Poly;
/// use ndarray::prelude::*;
///
/// let p1 = Poly::new(array![1.0, 0.0]);
/// let p2 = Poly::new(array![1.0]);
/// assert_eq!(p1.clone() - p1.clone(), Poly::new(array![]));
/// assert_eq!(p2.clone() - p1.clone(), Poly::new(array![-1.0, 1.0]));
/// assert_eq!(p1 - p2, Poly::new(array![1.0, -1.0]));
/// ```
fn sub(self, rhs: Self) -> Self::Output {
let len_delta = self.raw_len() as isize - rhs.raw_len() as isize;
(if len_delta == 0 {
Self(self.0 - rhs.0)
} else if len_delta < 0 {
let mut lhs: Array1<T> = Array1::<T>::zeros([len_delta.abs() as usize]);
lhs.append(Axis(0), self.0.view()).unwrap(); // TODO
Self(lhs - rhs.0)
} else {
let mut rhs_new: Array1<T> = Array1::<T>::zeros([len_delta as usize]);
rhs_new.append(Axis(0), rhs.0.view()).unwrap(); // TODO
Self(self.0 - rhs_new)
})
.trim_zeros()
}
}
impl<T: Scalar> Mul for Poly<T> {
type Output = Poly<T>;
/// Multiplies two polynomials together
///
/// ## Examples
///
/// Convolve two polynomials
/// ```
/// # use rust_poly::Poly;
/// use ndarray::prelude::*;
///
/// let p1 = Poly::new(array![1.0, 2.0, 3.0]);
/// let p2 = Poly::new(array![9.0, 5.0, 1.0]);
/// let prod = p1 * p2;
/// assert_eq!(prod, Poly::new(array![9.0, 23.0, 38.0, 17.0, 3.0]));
/// ```
///
/// Scalar multiplication
/// ```
/// # use rust_poly::Poly;
/// use ndarray::prelude::*;
///
/// let p1 = Poly::term(3, 0);
/// let p2 = Poly::new(array![1, 1]);
/// let prod1 = p1.clone() * p2.clone();
/// let prod2 = p2.clone() * p1.clone();
/// assert_eq!(prod1, Poly::new(array![3, 3]));
/// assert_eq!(prod2, Poly::new(array![3, 3]));
/// ```
fn mul(self, rhs: Self) -> Self::Output {
Self(convolve_1d(self.0.view(), rhs.0.view())).trim_zeros()
}
}
impl<T: Scalar> Div for Poly<T> {
type Output = Poly<T>;
/// Computes the quotient of two polynomials, truncating the remainder.
///
/// See also `Poly::div_rem()`.
fn div(self, rhs: Self) -> Self::Output {
self.div_rem(rhs).0
}
}
impl<T: Scalar> Rem for Poly<T> {
type Output = Poly<T>;
/// Computes the remainder of the division of two polynomials.
///
/// See also `Poly::div_rem()`.
fn rem(self, rhs: Self) -> Self::Output {
self.div_rem(rhs).1
}
}
// TODO: this is a slightly modified version of a ChatGPT 3.5 answer,
// integrate it better by placing it inside `Poly::mul` and changing
// the name of variables.
fn convolve_1d<T: Scalar>(input: ArrayView1<T>, kernel: ArrayView1<T>) -> Array1<T> {
let input_len = input.len();
let kernel_len = kernel.len();
let output_len = input_len + kernel_len - 1;
let mut output: Array1<T> = Array1::<T>::zeros([output_len]);
for i in 0..output_len {
let mut sum = T::zero();
for j in 0..kernel_len {
let k = i as isize - j as isize;
if k >= 0 && k < input_len as isize {
sum = sum.clone() + input[k as usize].clone() * kernel[j].clone();
}
}
output[i] = sum;
}
output
}