1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
/// This module contains the implementation of query executors for table-related operations.
/// It provides traits and structs for executing queries on a single data source and on dual data sources.
/// The single data source executor is responsible for querying table names and primary keys.
/// The dual data source executor is responsible for querying table counts and hash data.
/// Both executors use the `sqlx` crate for interacting with the database.
///
/// # Examples
///
/// ```no_run
/// use sqlx::postgres::PgPool;
/// use rust_pgdatadiff::diff::table::query::table_query_executor::{
/// TableSingleSourceQueryExecutor, TableSingleSourceQueryExecutorImpl,
/// TableDualSourceQueryExecutor, TableDualSourceQueryExecutorImpl,
/// };
/// use rust_pgdatadiff::diff::table::query::input::{QueryHashDataInput, QueryPrimaryKeysInput, QueryTableCountInput, QueryTableNamesInput};///
/// use rust_pgdatadiff::diff::table::query::table_types::{TableName, TableOffset, TablePosition, TablePrimaryKeys};
/// use rust_pgdatadiff::diff::types::SchemaName;
///
/// #[tokio::main]
/// async fn main() {
/// // Create a single data source executor
/// let db_client: PgPool = PgPool::connect("postgres://user:password@localhost:5432/database")
/// .await
/// .unwrap();
/// let single_source_executor = TableSingleSourceQueryExecutorImpl::new(db_client);
///
/// // Query table names
/// let schema_name = SchemaName::new("public".to_string());
/// let included_tables = vec!["table1", "table2"];
/// let excluded_tables: Vec<String> = vec![];
/// let table_names = single_source_executor
/// .query_table_names(QueryTableNamesInput::new(schema_name, included_tables, excluded_tables))
/// .await;
///
/// // Query primary keys
/// let primary_keys = single_source_executor
/// .query_primary_keys(QueryPrimaryKeysInput::new("table1".to_string()))
/// .await;
///
/// // Create a dual data source executor
/// let first_db_client: PgPool = PgPool::connect("postgres://user:password@localhost:5432/database1")
/// .await
/// .unwrap();
/// let second_db_client: PgPool = PgPool::connect("postgres://user:password@localhost:5432/database2")
/// .await
/// .unwrap();
/// let dual_source_executor = TableDualSourceQueryExecutorImpl::new(first_db_client, second_db_client);
///
/// // Query table counts
/// let schema_name = SchemaName::new("public");
/// let table_name = TableName::new("table1");
/// let (first_count, second_count) = dual_source_executor
/// .query_table_count(QueryTableCountInput::new(schema_name, table_name))
/// .await;
///
/// // Query hash data
/// let schema_name = SchemaName::new("public");
/// let table_name = TableName::new("table1");
/// let primary_keys = TablePrimaryKeys::new("id");
/// let table_position = TablePosition::new(0);
/// let table_offset = TableOffset::new(100);
/// let (first_hash, second_hash) = dual_source_executor
/// .query_hash_data(QueryHashDataInput::new(schema_name, table_name, primary_keys, table_position, table_offset))
/// .await;
/// }
/// ```
use anyhow::Result;
use async_trait::async_trait;
use sqlx::{Pool, Postgres, Row};
use crate::diff::table::query::input::{
QueryHashDataInput, QueryPrimaryKeysInput, QueryTableCountInput, QueryTableNamesInput,
};
use crate::diff::table::query::table_query::TableQuery;
use crate::diff::table::query::table_types::{IncludedExcludedTables, TableName};
#[cfg(test)]
use mockall::automock;
#[cfg_attr(test, automock)]
#[async_trait]
/// This trait represents a query executor for a single source table.
pub trait TableSingleSourceQueryExecutor {
/// Queries the table names from the database.
///
/// # Arguments
///
/// * `input` - The input parameters for the query.
///
/// # Returns
///
/// A vector of table names.
async fn query_table_names(&self, input: QueryTableNamesInput) -> Vec<String>;
/// Queries the primary keys of a table from the database.
///
/// # Arguments
///
/// * `input` - The input parameters for the query.
///
/// # Returns
///
/// A vector of primary key column names.
async fn query_primary_keys(&self, input: QueryPrimaryKeysInput) -> Vec<String>;
}
pub struct TableSingleSourceQueryExecutorImpl {
db_client: Pool<Postgres>,
}
impl TableSingleSourceQueryExecutorImpl {
pub fn new(db_client: Pool<Postgres>) -> Self {
Self { db_client }
}
}
#[async_trait]
impl TableSingleSourceQueryExecutor for TableSingleSourceQueryExecutorImpl {
async fn query_table_names(&self, input: QueryTableNamesInput) -> Vec<String> {
// Clone the database client
let pool = self.db_client.clone();
// Prepare the query for fetching table names
let all_tables_query = TableQuery::AllTablesForSchema(
input.schema_name().to_owned(),
IncludedExcludedTables::new(input.included_tables(), input.excluded_tables()),
);
// Fetch table names
let query_result = sqlx::query(all_tables_query.to_string().as_str())
.bind(input.schema_name().name())
.fetch_all(&pool)
.await
.unwrap_or(vec![]);
// Map query results to [Vec<String>]
query_result
.iter()
.map(|row| row.get("table_name"))
.collect::<Vec<String>>()
}
async fn query_primary_keys(&self, input: QueryPrimaryKeysInput) -> Vec<String> {
// Clone the database client
let pool = self.db_client.clone();
// Prepare the query for primary keys fetching
let find_primary_key_query =
TableQuery::FindPrimaryKeyForTable(TableName::new(input.table_name()));
// Fetch primary keys for the table
let query_result = sqlx::query(find_primary_key_query.to_string().as_str())
.fetch_all(&pool)
.await
.unwrap_or(vec![]);
// Map query results to [Vec<String>]
query_result
.iter()
.map(|row| row.get("attname"))
.collect::<Vec<String>>()
}
}
#[cfg_attr(test, automock)]
#[async_trait]
/// This trait defines the methods for executing queries on a dual source table.
pub trait TableDualSourceQueryExecutor {
/// Executes a query to retrieve the count of rows in a table.
///
/// # Arguments
///
/// * `input` - The input parameters for the query.
///
/// # Returns
///
/// A tuple containing the result of the query as a `Result<i64>`.
async fn query_table_count(&self, input: QueryTableCountInput) -> (Result<i64>, Result<i64>);
/// Executes a query to retrieve the hash data of a table.
///
/// # Arguments
///
/// * `input` - The input parameters for the query.
///
/// # Returns
///
/// A tuple containing the hash data as two `String` values.
async fn query_hash_data(&self, input: QueryHashDataInput) -> (String, String);
}
pub struct TableDualSourceQueryExecutorImpl {
first_db_client: Pool<Postgres>,
second_db_client: Pool<Postgres>,
}
impl TableDualSourceQueryExecutorImpl {
pub fn new(first_db_client: Pool<Postgres>, second_db_client: Pool<Postgres>) -> Self {
Self {
first_db_client,
second_db_client,
}
}
}
#[async_trait]
impl TableDualSourceQueryExecutor for TableDualSourceQueryExecutorImpl {
async fn query_table_count(&self, input: QueryTableCountInput) -> (Result<i64>, Result<i64>) {
// Clone the database clients
let first_pool = self.first_db_client.clone();
let second_pool = self.second_db_client.clone();
// Prepare the query for counting rows
let count_rows_query = TableQuery::CountRowsForTable(
input.schema_name().to_owned(),
input.table_name().to_owned(),
);
let count_query_binding = count_rows_query.to_string();
// Prepare count queries for both databases
let first_count = sqlx::query(count_query_binding.as_str()).fetch_one(&first_pool);
let second_count = sqlx::query(count_query_binding.as_str()).fetch_one(&second_pool);
// Fetch counts for both databases
let count_fetch_futures = futures::future::join_all(vec![first_count, second_count]).await;
let first_count = count_fetch_futures.first().unwrap();
let second_count = count_fetch_futures.get(1).unwrap();
// Map count results to [anyhow::Result<i64>]
let first_count: Result<i64> = match first_count {
Ok(pg_row) => Ok(pg_row.try_get::<i64, _>("count").unwrap()),
Err(_e) => Err(anyhow::anyhow!("Failed to fetch count for first table")),
};
let second_count: Result<i64> = match second_count {
Ok(pg_row) => Ok(pg_row.try_get::<i64, _>("count").unwrap()),
Err(_e) => Err(anyhow::anyhow!("Failed to fetch count for second table")),
};
(first_count, second_count)
}
async fn query_hash_data(&self, input: QueryHashDataInput) -> (String, String) {
// Clone the database clients
let first_pool = self.first_db_client.clone();
let second_pool = self.second_db_client.clone();
// Prepare the query for fetching data hashes
let hash_query = TableQuery::HashQuery(
input.schema_name(),
input.table_name(),
input.primary_keys(),
input.position(),
input.offset(),
);
let hash_query_binding = hash_query.to_string();
// Prepare hash queries for both databases
let first_hash = sqlx::query(hash_query_binding.as_str()).fetch_one(&first_pool);
let second_hash = sqlx::query(hash_query_binding.as_str()).fetch_one(&second_pool);
// Fetch hashes for both databases
let hash_fetch_futures = futures::future::join_all(vec![first_hash, second_hash]).await;
let first_hash = hash_fetch_futures.first().unwrap();
let second_hash = hash_fetch_futures.get(1).unwrap();
// Map hash results to [String]
let first_hash = match first_hash {
Ok(pg_row) => pg_row
.try_get::<String, _>("md5")
.unwrap_or("not_available".to_string()),
Err(e) => e.to_string(),
};
let second_hash = match second_hash {
Ok(pg_row) => pg_row
.try_get::<String, _>("md5")
.unwrap_or("not_available".to_string()),
Err(e) => e.to_string(),
};
(first_hash, second_hash)
}
}