1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
use crate::repo::paths::{block_path, filestem_to_block_cid};
use crate::repo::{BlockRm, BlockRmError, RepoCid};
use crate::error::Error;
use crate::repo::{BlockPut, BlockStore};
use crate::Block;
use async_trait::async_trait;
use hash_hasher::{HashBuildHasher, HashedMap};
use libipld::Cid;
use std::hash::Hash;
use std::io::Read;
use std::path::PathBuf;
use std::sync::atomic::{AtomicU64, Ordering};
use std::sync::Arc;
use std::sync::Mutex;
use tokio::fs;
use tokio::sync::broadcast;
use tracing_futures::Instrument;
type ArcMutexHashedMap<A, B> = Arc<Mutex<HashedMap<A, B>>>;
/// File system backed block store.
///
/// For information on path mangling, please see `block_path` and `filestem_to_block_cid`.
#[derive(Debug)]
pub struct FsBlockStore {
/// The base directory under which we have a sharded directory structure, and the individual
/// blocks are stored under the shard. See unixfs/examples/cat.rs for read example.
path: PathBuf,
/// Synchronize concurrent reads and writes to the same Cid.
/// If the write ever happens, the message sent will be Ok(()), on failure it'll be an Err(()).
/// Since this is a broadcast channel, the late arriving receiver might not get any messages.
writes: ArcMutexHashedMap<RepoCid, broadcast::Sender<Result<(), ()>>>,
/// Initially used to demonstrate a bug, not really needed anymore. Could be used as a basis
/// for periodic synching to disk to know much space we have used.
written_bytes: AtomicU64,
}
impl FsBlockStore {
pub fn new(path: PathBuf) -> Self {
FsBlockStore {
path,
writes: Arc::new(Mutex::new(HashedMap::with_capacity_and_hasher(
8,
HashBuildHasher::default(),
))),
written_bytes: Default::default(),
}
}
}
/// A helper used to remove our key from `FsBlockStore::writes`. It is quite inefficient, some
/// kind of reference counting would be great.
///
/// [`Drop`] is used to clean up the so that it is _safer_ to drop the future returned by
/// `FsBlockStore::put`.
///
/// Without reference counting, there is a race condition with repeated multiple
/// concurrent writers and dropping; this might lead to the first ones dropping the latter
/// concurrent writes [`FsBlockStore::writes`] key.
struct RemoveOnDrop<K: Eq + Hash, V>(ArcMutexHashedMap<K, V>, Option<K>);
impl<K: Eq + Hash, V> Drop for RemoveOnDrop<K, V> {
fn drop(&mut self) {
if let Some(key) = self.1.take() {
let mut g = self.0.lock().unwrap();
// FIXME: there should be something here to make sure the value is of the expected
// "generation", not to remove any future channels. Or then, we could just use the
// tokio::sync::broadcast::Sender::receiver_count here to make sure we only remove an
// unused Sender. This would however wreak havoc on the FsBlockStore::put long match in
// the end, which has match arms which assume all of the senders have gone away.
g.remove(&key);
}
}
}
/// When synchronizing to a possible ongoing write through `FsBlockStore::writes` these are the
/// possible outcomes.
#[derive(Debug)]
enum WriteCompletion {
KnownGood,
NotObserved,
KnownBad,
NotOngoing,
}
impl FsBlockStore {
/// Returns the same Cid in either case. Ok variant is returned in case it is suspected the
/// write completed successfully or there was never any write ongoing. Err variant is returned
/// if it's known that the write failed.
async fn write_completion(&self, cid: &Cid) -> WriteCompletion {
use std::collections::hash_map::Entry;
let mut rx = match self
.writes
.lock()
.expect("cannot support poisoned")
.entry(RepoCid(*cid))
{
Entry::Occupied(oe) => oe.get().subscribe(),
Entry::Vacant(_) => return WriteCompletion::NotOngoing,
};
trace!("awaiting concurrent write to completion");
match rx.recv().await {
Ok(Ok(())) => WriteCompletion::KnownGood,
Err(broadcast::error::RecvError::Closed) => WriteCompletion::NotObserved,
Ok(Err(_)) => WriteCompletion::KnownBad,
Err(broadcast::error::RecvError::Lagged(_)) => {
unreachable!("sending at most one message to the channel with capacity of one")
}
}
}
}
#[async_trait]
impl BlockStore for FsBlockStore {
async fn init(&self) -> Result<(), Error> {
fs::create_dir_all(self.path.clone()).await?;
Ok(())
}
async fn open(&self) -> Result<(), Error> {
// TODO: we probably want to cache the space usage?
Ok(())
}
async fn contains(&self, cid: &Cid) -> Result<bool, Error> {
let path = block_path(self.path.clone(), cid);
// why doesn't this synchronize with the rest? Not sure if there is any use for this method
// actually. When does it matter if a block exists, except for testing.
let metadata = match fs::metadata(path).await {
Ok(m) => m,
Err(e) if e.kind() == std::io::ErrorKind::NotFound => return Ok(false),
Err(e) => return Err(e.into()),
};
Ok(metadata.is_file())
}
async fn get(&self, cid: &Cid) -> Result<Option<Block>, Error> {
let span = tracing::trace_span!("get block", cid = %cid);
async move {
if let WriteCompletion::KnownBad = self.write_completion(cid).await {
return Ok(None);
}
let path = block_path(self.path.clone(), cid);
let cid = cid.to_owned();
// probably best to do everything in the blocking thread if we are to issue multiple
// syscalls
tokio::task::spawn_blocking(move || {
let mut file = match std::fs::File::open(path) {
Ok(file) => file,
Err(e) if e.kind() == std::io::ErrorKind::NotFound => return Ok(None),
Err(e) => {
return Err(e.into());
}
};
let len = file.metadata()?.len();
let mut data = Vec::with_capacity(len as usize);
file.read_to_end(&mut data)?;
let block = Block::new(cid, data)?;
Ok(Some(block))
})
.await?
}
.instrument(span)
.await
}
async fn put(&self, block: Block) -> Result<(Cid, BlockPut), Error> {
use std::collections::hash_map::Entry;
let span = tracing::trace_span!("put block", cid = %block.cid());
let target_path = block_path(self.path.clone(), block.cid());
let cid = *block.cid();
let inner_span = debug_span!(parent: &span, "blocking");
async move {
// why synchronize here? because when we lose the race we cant know if there was someone
// else interested in writing this block or not
// FIXME: allowing only the creator to cleanup means this is not forget safe. the forget
// doesn't result in memory unsafety but it will deadlock any other access to the cid.
let (tx, mut rx) = {
let mut g = self.writes.lock().expect("cant support poisoned");
match g.entry(RepoCid(*block.cid())) {
Entry::Occupied(oe) => {
// someone is already writing this, nice
trace!("joining in on another already writing the block");
(oe.get().clone(), oe.get().subscribe())
}
Entry::Vacant(ve) => {
// we might be the first, or then the block exists already
let (tx, rx) = broadcast::channel(1);
ve.insert(tx.clone());
(tx, rx)
}
}
};
// create this in case the winner is dropped while awaiting
let cleanup = RemoveOnDrop(self.writes.clone(), Some(RepoCid(*block.cid())));
// launch a blocking task for the filesystem mutation.
let je = tokio::task::spawn_blocking(move || {
// pick winning writer with filesystem and create_new; this error will be the 1st
// nested level
// this is blocking context, use this instead of instrument
let _entered = inner_span.enter();
let sharded = target_path
.parent()
.expect("we already have at least the shard parent");
// FIXME: missing fsync on directories; for example after winning the race we could
// fsync the parent and parent.parent
std::fs::create_dir_all(sharded)?;
let target = std::fs::OpenOptions::new()
.write(true)
.create_new(true)
.open(&target_path)?;
let temp_path = target_path.with_extension("tmp");
match write_through_tempfile(target, &target_path, temp_path, block.data()) {
Ok(()) => {
trace!("successfully wrote the block");
Ok::<_, std::io::Error>(Ok(block.data().len()))
}
Err(e) => {
match std::fs::remove_file(&target_path) {
Ok(_) => debug!("removed partially written {:?}", target_path),
Err(removal) => warn!(
"failed to remove partially written {:?}: {}",
target_path, removal
),
}
Ok(Err(e))
}
}
})
.await;
// this is quite unfortunate but can't think of a way which would handle cleanup in drop
// and not waste much effort.
drop(cleanup);
match je {
Ok(Ok(Ok(written))) => {
trace!(bytes = written, "block writing succeeded");
let _ = tx
.send(Ok(()))
.expect("this cannot fail as we have at least one receiver on stack");
drop(rx);
drop(tx);
self.written_bytes
.fetch_add(written as u64, Ordering::SeqCst);
Ok((cid, BlockPut::NewBlock))
}
Ok(Ok(Err(e))) => {
trace!("write failed but hopefully the target was removed");
let _ = tx
.send(Err(()))
.expect("this cannot fail as we have at least one receiver on the stack");
drop(rx);
drop(tx);
Err(Error::new(e))
}
Ok(Err(e)) => {
trace!("lost block writing race: {}", e);
// At least the following cases:
// - the block existed already
// - the block is being written to and we should await for this to complete
// - readonly or full filesystem prevents file creation
drop(tx);
let message = match rx.recv().await {
Ok(message) => {
trace!("synchronized with writer, write outcome: {:?}", message);
message
}
Err(broadcast::error::RecvError::Closed) => {
// there was never any write intention by any party, and we may have just
// closed the last sender above, or we were late for the one message.
Ok(())
}
Err(broadcast::error::RecvError::Lagged(_)) => {
unreachable!("broadcast channel should only be messaged once here")
}
};
drop(rx);
if message.is_err() {
// could loop, however if one write failed, the next should probably
// fail as well (e.g. out of disk space)
Err(anyhow::anyhow!("other concurrent write failed"))
} else {
Ok((cid, BlockPut::Existed))
}
}
Err(e) if e.is_cancelled() => {
trace!("runtime is shutting down: {}", e);
Err(e.into())
}
Err(e) => {
// as of writing this, we didn't have panicking inside the task
error!("blocking put task panicked or something else: {}", e);
Err(e.into())
}
}
}
.instrument(span)
.await
}
async fn remove(&self, cid: &Cid) -> Result<Result<BlockRm, BlockRmError>, Error> {
let path = block_path(self.path.clone(), cid);
let span = trace_span!("remove block", cid = %cid);
match self.write_completion(cid).instrument(span).await {
WriteCompletion::KnownBad => Ok(Err(BlockRmError::NotFound(*cid))),
completion => {
trace!(cid = %cid, completion = ?completion, "removing block after synchronizing");
match fs::remove_file(path).await {
// FIXME: not sure if theres any point in taking cid ownership here?
Ok(()) => Ok(Ok(BlockRm::Removed(*cid))),
Err(e) if e.kind() == std::io::ErrorKind::NotFound => {
Ok(Err(BlockRmError::NotFound(*cid)))
}
Err(e) => Err(e.into()),
}
}
}
}
async fn list(&self) -> Result<Vec<Cid>, Error> {
/// Implementation moved in a separate function from the outer body. The `#[async_trait]`
/// used for the outer body generates two lifetime parameters for all of the trait
/// functions, and somehow the two lifetimes generated by `#[async_trait]` just don't work
/// leading to confusing error when `ipfs` is used as a dependency in an outside of
/// workspace crate.
///
/// See [the first gist] for the standalone working workaround, error and an expanded
/// version of the original code. What's more, this was bisected to be because of changed
/// structure in async-trait version 0.1.42 to 0.1.43. See [the second gist] for expansion
/// difference between the two async-trait versions.
///
/// [the first gist]: https://gist.github.com/koivunej/d6abccb4133839eeab8b36992f1a95fa
/// [the second gist]: https://gist.github.com/koivunej/cbcaae52b7242a73419ef62e4c606bd7
async fn list0(p: PathBuf) -> Result<Vec<Cid>, Error> {
use futures::future::ready;
use futures::stream::TryStreamExt;
use tokio_stream::wrappers::ReadDirStream;
let span = tracing::trace_span!("listing blocks");
async move {
let stream = ReadDirStream::new(fs::read_dir(p).await?);
let vec = stream
.try_filter_map(|d| async move {
// map over the shard directories
Ok(if d.file_type().await?.is_dir() {
Some(ReadDirStream::new(fs::read_dir(d.path()).await?))
} else {
None
})
})
// flatten each; there could be unordered execution pre-flattening
.try_flatten()
// convert the paths ending in ".data" into cid
.try_filter_map(|d| {
let name = d.file_name();
let path: &std::path::Path = name.as_ref();
ready(if path.extension() != Some("data".as_ref()) {
Ok(None)
} else {
let maybe_cid = filestem_to_block_cid(path.file_stem());
Ok(maybe_cid)
})
})
.try_collect::<Vec<_>>()
.await?;
Ok(vec)
}
.instrument(span)
.await
}
list0(self.path.to_owned()).await
}
}
fn write_through_tempfile(
target: std::fs::File,
target_path: impl AsRef<std::path::Path>,
temp_path: impl AsRef<std::path::Path>,
data: &[u8],
) -> Result<(), std::io::Error> {
use std::io::Write;
let mut temp = std::fs::OpenOptions::new()
.write(true)
.create(true)
.truncate(true)
.open(&temp_path)?;
temp.write_all(data)?;
temp.flush()?;
// safe default
temp.sync_all()?;
drop(temp);
drop(target);
std::fs::rename(temp_path, target_path)?;
// FIXME: there should be a directory fsync here as well
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
use crate::Block;
use hex_literal::hex;
use libipld::{
multihash::{Code, MultihashDigest},
Cid, IpldCodec,
};
use std::convert::TryFrom;
use std::env::temp_dir;
use std::sync::Arc;
#[tokio::test]
async fn test_fs_blockstore() {
let mut tmp = temp_dir();
tmp.push("blockstore1");
std::fs::remove_dir_all(tmp.clone()).ok();
let store = FsBlockStore::new(tmp.clone());
let data = b"1".to_vec();
let cid = Cid::new_v1(IpldCodec::Raw.into(), Code::Sha2_256.digest(&data));
let block = Block::new(cid, data).unwrap();
store.init().await.unwrap();
store.open().await.unwrap();
let contains = store.contains(&cid).await.unwrap();
assert!(!contains);
let get = store.get(&cid).await.unwrap();
assert_eq!(get, None);
if store.remove(&cid).await.unwrap().is_ok() {
panic!("block should not be found")
}
let put = store.put(block.clone()).await.unwrap();
assert_eq!(put.0, cid.to_owned());
let contains = store.contains(&cid);
assert!(contains.await.unwrap());
let get = store.get(&cid);
assert_eq!(get.await.unwrap(), Some(block.clone()));
store.remove(&cid).await.unwrap().unwrap();
let contains = store.contains(&cid);
assert!(!contains.await.unwrap());
let get = store.get(&cid);
assert_eq!(get.await.unwrap(), None);
std::fs::remove_dir_all(tmp).ok();
}
#[tokio::test]
async fn test_fs_blockstore_open() {
let mut tmp = temp_dir();
tmp.push("blockstore2");
std::fs::remove_dir_all(&tmp).ok();
let data = b"1".to_vec();
let cid = Cid::new_v1(IpldCodec::Raw.into(), Code::Sha2_256.digest(&data));
let block = Block::new(cid, data).unwrap();
let block_store = FsBlockStore::new(tmp.clone());
block_store.init().await.unwrap();
block_store.open().await.unwrap();
assert!(!block_store.contains(block.cid()).await.unwrap());
block_store.put(block.clone()).await.unwrap();
let block_store = FsBlockStore::new(tmp.clone());
block_store.open().await.unwrap();
assert!(block_store.contains(block.cid()).await.unwrap());
assert_eq!(block_store.get(block.cid()).await.unwrap().unwrap(), block);
std::fs::remove_dir_all(&tmp).ok();
}
#[tokio::test]
async fn test_fs_blockstore_list() {
let mut tmp = temp_dir();
tmp.push("blockstore_list");
std::fs::remove_dir_all(&tmp).ok();
let block_store = FsBlockStore::new(tmp.clone());
block_store.init().await.unwrap();
block_store.open().await.unwrap();
for data in &[b"1", b"2", b"3"] {
let data_slice = data.to_vec();
let cid = Cid::new_v1(IpldCodec::Raw.into(), Code::Sha2_256.digest(&data_slice));
let block = Block::new(cid, data_slice).unwrap();
block_store.put(block.clone()).await.unwrap();
}
let cids = block_store.list().await.unwrap();
assert_eq!(cids.len(), 3);
for cid in cids.iter() {
assert!(block_store.contains(cid).await.unwrap());
}
}
#[tokio::test]
async fn race_to_insert_new() {
// FIXME: why not tempdir?
let mut tmp = temp_dir();
tmp.push("race_to_insert_new");
std::fs::remove_dir_all(&tmp).ok();
let single = FsBlockStore::new(tmp.clone());
single.init().await.unwrap();
let single = Arc::new(single);
let cid = Cid::try_from("QmRgutAxd8t7oGkSm4wmeuByG6M51wcTso6cubDdQtuEfL").unwrap();
let data = hex!("0a0d08021207666f6f6261720a1807");
let block = Block::new(cid, data.into()).unwrap();
let count = 10;
let (writes, existing) = race_to_insert_scenario(count, block, &single).await;
let single = Arc::try_unwrap(single).unwrap();
assert_eq!(single.written_bytes.into_inner(), 15);
assert_eq!(writes, 1);
assert_eq!(existing, count - 1);
}
#[tokio::test]
async fn race_to_insert_with_existing() {
// FIXME: why not tempdir?
let mut tmp = temp_dir();
tmp.push("race_to_insert_existing");
std::fs::remove_dir_all(&tmp).ok();
let single = FsBlockStore::new(tmp.clone());
single.init().await.unwrap();
let single = Arc::new(single);
let cid = Cid::try_from("QmRgutAxd8t7oGkSm4wmeuByG6M51wcTso6cubDdQtuEfL").unwrap();
let data = hex!("0a0d08021207666f6f6261720a1807");
let block = Block::new(cid, data.to_vec()).unwrap();
single.put(block.clone()).await.unwrap();
assert_eq!(single.written_bytes.load(Ordering::SeqCst), 15);
let count = 10;
let (writes, existing) = race_to_insert_scenario(count, block, &single).await;
let single = Arc::try_unwrap(single).unwrap();
assert_eq!(single.written_bytes.into_inner(), 15);
assert_eq!(writes, 0);
assert_eq!(existing, count);
}
async fn race_to_insert_scenario(
count: usize,
block: Block,
blockstore: &Arc<FsBlockStore>,
) -> (usize, usize) {
let barrier = Arc::new(tokio::sync::Barrier::new(count));
let join_handles = (0..count)
.map(|_| {
tokio::spawn({
let bs = Arc::clone(blockstore);
let barrier = Arc::clone(&barrier);
let block = block.clone();
async move {
barrier.wait().await;
bs.put(block).await
}
})
})
.collect::<Vec<_>>();
let mut writes = 0usize;
let mut existing = 0usize;
for jh in join_handles {
let res = jh.await;
match res {
Ok(Ok((_, BlockPut::NewBlock))) => writes += 1,
Ok(Ok((_, BlockPut::Existed))) => existing += 1,
Ok(Err(e)) => println!("joinhandle err: {e}"),
_ => unreachable!("join error"),
}
}
(writes, existing)
}
#[tokio::test]
async fn remove() {
// FIXME: why not tempdir?
let mut tmp = temp_dir();
tmp.push("remove");
std::fs::remove_dir_all(&tmp).ok();
let single = FsBlockStore::new(tmp.clone());
single.init().await.unwrap();
let cid = Cid::try_from("QmRgutAxd8t7oGkSm4wmeuByG6M51wcTso6cubDdQtuEfL").unwrap();
let data = hex!("0a0d08021207666f6f6261720a1807");
let block = Block::new(cid, data.into()).unwrap();
assert_eq!(single.list().await.unwrap().len(), 0);
single.put(block).await.unwrap();
// compare the multihash since we store the block named as cidv1
assert_eq!(single.list().await.unwrap()[0].hash(), cid.hash());
single.remove(&cid).await.unwrap().unwrap();
assert_eq!(single.list().await.unwrap().len(), 0);
}
}