1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
use super::mcb_if::MCBInterface4GDDR3;
use super::mig7::MemoryInterfaceGenerator7Series;
use crate::core::prelude::*;
use crate::widgets::prelude::*;
#[derive(LogicState, Debug, Copy, Clone, PartialEq)]
pub enum DDR7FIFOState {
Booting,
Idle,
Read,
Write,
}
#[derive(LogicBlock, Default)]
pub struct DDR7FIFO<const N: usize> {
pub reset: Signal<In, Bit>,
pub sys_clock_p: Signal<In, Clock>,
pub sys_clock_n: Signal<In, Clock>,
pub mcb: MCBInterface4GDDR3,
pub data_in: Signal<In, Bits<N>>,
pub full: Signal<Out, Bit>,
pub write: Signal<In, Bit>,
pub write_clock: Signal<In, Clock>,
pub data_out: Signal<Out, Bits<N>>,
pub empty: Signal<Out, Bit>,
pub read: Signal<In, Bit>,
pub read_clock: Signal<In, Clock>,
mig: MemoryInterfaceGenerator7Series,
front_porch: CrossWidenFIFO<{ N }, 10, 11, 128, 5, 6>,
write_address: DFF<Bits<28>>,
read_address: DFF<Bits<28>>,
back_porch: CrossNarrowFIFO<128, 8, 9, { N }, 10, 11>,
state: DFF<DDR7FIFOState>,
is_empty: Signal<Local, Bit>,
pub status: Signal<Out, Bits<8>>,
}
impl<const N: usize> Logic for DDR7FIFO<N> {
#[hdl_gen]
fn update(&mut self) {
MCBInterface4GDDR3::link(&mut self.mcb, &mut self.mig.mcb);
self.mig.raw_pos_clock.next = self.sys_clock_p.val();
self.mig.raw_neg_clock.next = self.sys_clock_n.val();
self.front_porch.write_clock.next = self.write_clock.val();
self.front_porch.data_in.next = self.data_in.val();
self.front_porch.write.next = self.write.val();
self.full.next = self.front_porch.full.val();
self.back_porch.read_clock.next = self.read_clock.val();
self.data_out.next = self.back_porch.data_out.val();
self.back_porch.read.next = self.read.val();
self.empty.next = self.back_porch.empty.val();
self.mig.write_data_in.next = self.front_porch.data_out.val();
self.front_porch.read_clock.next = self.mig.clock.val();
self.front_porch.read.next = false;
self.back_porch.data_in.next = self.mig.read_data_out.val();
self.back_porch.write_clock.next = self.mig.clock.val();
self.back_porch.write.next = false;
self.write_address.clk.next = self.mig.clock.val();
self.read_address.clk.next = self.mig.clock.val();
self.state.clk.next = self.mig.clock.val();
self.write_address.d.next = self.write_address.q.val();
self.read_address.d.next = self.read_address.q.val();
self.state.d.next = self.state.q.val();
self.mig.address.next = 0_u32.into();
self.mig.enable.next = false;
self.mig.write_enable.next = false;
self.mig.reset.next = self.reset.val();
self.mig.write_data_mask.next = 0_u32.into();
self.mig.write_data_end.next = false;
self.mig.command.next = 0_u8.into();
self.is_empty.next = self.read_address.q.val() == self.write_address.q.val();
match self.state.q.val() {
DDR7FIFOState::Booting => {
if self.mig.calib_done.val() & !self.reset.val() {
self.state.d.next = DDR7FIFOState::Idle;
}
}
DDR7FIFOState::Idle => {
if !self.is_empty.val() & !self.back_porch.full.val() & self.mig.ready.val() {
self.mig.command.next = 1_u8.into();
self.mig.enable.next = true;
self.mig.address.next = bit_cast::<29, 28>(self.read_address.q.val());
self.state.d.next = DDR7FIFOState::Read;
} else if !self.front_porch.empty.val()
& self.mig.ready.val()
& self.mig.write_fifo_not_full.val()
{
self.mig.write_enable.next = true;
self.mig.write_data_end.next = true;
self.front_porch.read.next = true;
self.state.d.next = DDR7FIFOState::Write;
}
}
DDR7FIFOState::Write => {
self.mig.command.next = 0_u8.into();
self.mig.enable.next = true;
self.mig.address.next = bit_cast::<29, 28>(self.write_address.q.val());
if self.mig.ready.val() {
self.write_address.d.next = self.write_address.q.val() + 8_u32;
self.state.d.next = DDR7FIFOState::Idle;
}
}
DDR7FIFOState::Read => {
self.back_porch.write.next = self.mig.read_data_valid.val();
if self.mig.read_data_valid.val() {
self.read_address.d.next = self.read_address.q.val() + 8_u32;
self.state.d.next = DDR7FIFOState::Idle;
}
}
}
self.status.next = bit_cast::<8, 1>(self.front_porch.empty.val().into())
| (bit_cast::<8, 1>(self.front_porch.full.val().into()) << 1_usize)
| (bit_cast::<8, 1>(self.back_porch.empty.val().into()) << 2_usize)
| (bit_cast::<8, 1>(self.back_porch.full.val().into()) << 3_usize)
| (bit_cast::<8, 1>(self.is_empty.val().into()) << 4_usize)
| (bit_cast::<8, 1>((self.state.q.val() == DDR7FIFOState::Idle).into()) << 5_usize)
| (bit_cast::<8, 1>(self.mig.ready.val().into()) << 6_usize);
}
}
#[test]
fn test_ddr7_fifo_gen() {
let mut ddr = TopWrap::new(DDR7FIFO::<32>::default());
ddr.uut.sys_clock_n.connect();
ddr.uut.sys_clock_p.connect();
ddr.uut.mcb.link_connect_dest();
ddr.uut.data_in.connect();
ddr.uut.write.connect();
ddr.uut.read.connect();
ddr.uut.write_clock.connect();
ddr.uut.read_clock.connect();
ddr.uut.reset.connect();
ddr.connect_all();
yosys_validate("ddr7", &generate_verilog(&ddr)).unwrap();
}