1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
use super::mcb_if::MCBInterface1GDDR2;
use super::mig::MemoryInterfaceGenerator;
use crate::core::prelude::*;
use crate::widgets::prelude::*;

#[derive(LogicState, Debug, Copy, Clone, PartialEq)]
pub enum MIGInstruction {
    Write,
    Read,
    WritePreCharge,
    ReadPreCharge,
    Refresh,
}

#[derive(LogicState, Debug, Copy, Clone, PartialEq)]
pub enum DDRFIFOState {
    Booting,
    Idle,
    Read,
    Write,
    ReadComplete,
    WriteComplete,
    UpdateWriteAddress,
    Busy,
}

#[derive(LogicBlock, Default)]
pub struct DDRFIFO {
    // Clocks.  Raw sys clock must come
    // from the PLL at 100 MHz.  o_clock is
    // a rebuffered version used to clock the
    // interface.
    pub o_clock: Signal<Out, Clock>,
    pub raw_sys_clock: Signal<In, Clock>,
    // Reset signal
    pub reset: Signal<In, Bit>,
    // Read interface
    pub read: Signal<In, Bit>,
    pub data_out: Signal<Out, Bits<32>>,
    pub empty: Signal<Out, Bit>,
    pub almost_empty: Signal<Out, Bit>,
    pub read_clock: Signal<In, Clock>,
    // Write interface
    pub write: Signal<In, Bit>,
    pub data_in: Signal<In, Bits<32>>,
    pub almost_full: Signal<Out, Bit>,
    pub full: Signal<Out, Bit>,
    pub write_clock: Signal<In, Clock>,
    // DRAM interface
    pub mcb: MCBInterface1GDDR2,
    // Internal MIG
    mig: MemoryInterfaceGenerator,
    write_address: DFF<Bits<27>>,
    read_address: DFF<Bits<27>>,
    state: DFF<DDRFIFOState>,
    have_data: Signal<Local, Bit>,
    // Front porch FIFO
    front_porch: AsynchronousFIFO<Bits<32>, 10, 11, 32>,
    // Back porch FIFO
    back_porch: AsynchronousFIFO<Bits<32>, 8, 9, 32>,
    // Will accept data from front porch FIFO
    will_transfer_in: Signal<Local, Bit>,
    // Will push data to the back porch FIFO
    will_transfer_out: Signal<Local, Bit>,
    // transfer counter
    transfer_in_count: DFF<Bits<7>>,
    transfer_out_count: DFF<Bits<7>>,
    // Status byte
    pub status: Signal<Out, Bits<8>>,
}

impl Logic for DDRFIFO {
    #[hdl_gen]
    fn update(&mut self) {
        // Link the mcb interface
        MCBInterface1GDDR2::link(&mut self.mcb, &mut self.mig.mcb);
        // Forward the raw clock
        self.mig.raw_sys_clk.next = self.raw_sys_clock.val();
        // Update the output clock with the generated (buffered) clock
        self.o_clock.next = self.mig.clk_out.val();
        // Connect the flops and the interfaces to that buffered clock
        self.mig.p0_rd.clock.next = self.mig.clk_out.val();
        self.mig.p0_wr.clock.next = self.mig.clk_out.val();
        self.mig.p0_cmd.clock.next = self.mig.clk_out.val();
        self.write_address.clk.next = self.mig.clk_out.val();
        self.read_address.clk.next = self.mig.clk_out.val();
        self.state.clk.next = self.mig.clk_out.val();
        self.front_porch.read_clock.next = self.mig.clk_out.val();
        self.back_porch.write_clock.next = self.mig.clk_out.val();
        self.transfer_in_count.clk.next = self.mig.clk_out.val();
        self.transfer_out_count.clk.next = self.mig.clk_out.val();
        // Connect the data signals from the front and back porch
        // FIFOs to the MIG FIFOs
        self.mig.p0_wr.data.next = self.front_porch.data_out.val();
        self.back_porch.data_in.next = self.mig.p0_rd.data.val();
        // Connect the front porch fifo to our published
        // interfaces
        self.front_porch.data_in.next = self.data_in.val();
        self.front_porch.write.next = self.write.val();
        self.almost_full.next = self.front_porch.almost_full.val();
        self.full.next = self.front_porch.full.val();
        self.front_porch.write_clock.next = self.write_clock.val();
        // Connect the back porch fifo to our published
        // interface
        self.data_out.next = self.back_porch.data_out.val();
        self.back_porch.read.next = self.read.val();
        self.almost_empty.next = self.back_porch.almost_empty.val();
        self.empty.next = self.back_porch.empty.val();
        self.back_porch.read_clock.next = self.read_clock.val();
        // State management...
        self.state.d.next = self.state.q.val();
        // By default, do nothing.
        self.mig.p0_cmd.instruction.next = 0_usize.into();
        self.mig.p0_cmd.byte_address.next = 0_usize.into();
        self.mig.p0_cmd.burst_length.next = 31_usize.into(); // Always work with 32 word packets
        self.mig.p0_cmd.enable.next = false;
        // The DDR FIFO contains data if the write address is not equal to the
        // read address.  NOTE! There should be some protection for the DDR FIFO
        // filling up.  TODO - Add DDR overrun protection.
        self.have_data.next = self.write_address.q.val() != self.read_address.q.val();
        self.write_address.d.next = self.write_address.q.val();
        self.read_address.d.next = self.read_address.q.val();
        // Decide when we will transfer in
        self.will_transfer_in.next = self.transfer_in_count.q.val().any()
            & !self.mig.p0_wr.full.val()
            & !self.front_porch.empty.val();
        self.transfer_in_count.d.next =
            self.transfer_in_count.q.val() - bit_cast::<7, 1>(self.will_transfer_in.val().into());
        self.mig.p0_wr.enable.next = self.will_transfer_in.val();
        self.front_porch.read.next = self.will_transfer_in.val();
        // Decide when we will transfer out
        self.will_transfer_out.next = self.transfer_out_count.q.val().any()
            & !self.mig.p0_rd.empty.val()
            & !self.back_porch.full.val();
        self.transfer_out_count.d.next =
            self.transfer_out_count.q.val() - bit_cast::<7, 1>(self.will_transfer_out.val().into());
        self.mig.p0_rd.enable.next = self.will_transfer_out.val();
        self.back_porch.write.next = self.will_transfer_out.val();
        match self.state.q.val() {
            DDRFIFOState::Booting => {
                if self.mig.calib_done.val() & !self.reset.val() {
                    self.state.d.next = DDRFIFOState::Busy;
                }
            }
            DDRFIFOState::Idle => {
                if self.have_data.val() & !self.back_porch.almost_full.val() {
                    self.mig.p0_cmd.instruction.next = 1_usize.into();
                    self.mig.p0_cmd.byte_address.next =
                        bit_cast::<30, 27>(self.read_address.q.val());
                    self.mig.p0_cmd.enable.next = true;
                    self.transfer_out_count.d.next = 32_usize.into();
                    self.state.d.next = DDRFIFOState::Read;
                } else if !self.front_porch.almost_empty.val() {
                    self.transfer_in_count.d.next = 32_usize.into();
                    self.state.d.next = DDRFIFOState::Write;
                }
            }
            DDRFIFOState::Read => {
                if !self.transfer_out_count.q.val().any() {
                    self.state.d.next = DDRFIFOState::ReadComplete;
                }
            }
            DDRFIFOState::ReadComplete => {
                self.read_address.d.next = self.read_address.q.val() + 128_usize;
                self.state.d.next = DDRFIFOState::Busy;
            }
            DDRFIFOState::Write => {
                if !self.transfer_in_count.q.val().any() {
                    self.state.d.next = DDRFIFOState::WriteComplete;
                }
            }
            DDRFIFOState::WriteComplete => {
                self.mig.p0_cmd.instruction.next = 0_usize.into();
                self.mig.p0_cmd.byte_address.next = bit_cast::<30, 27>(self.write_address.q.val());
                self.mig.p0_cmd.enable.next = true;
                self.state.d.next = DDRFIFOState::UpdateWriteAddress;
            }
            DDRFIFOState::UpdateWriteAddress => {
                self.write_address.d.next = self.write_address.q.val() + 128_usize;
                self.state.d.next = DDRFIFOState::Busy;
            }
            DDRFIFOState::Busy => {
                if !self.mig.p0_cmd.full.val() {
                    self.state.d.next = DDRFIFOState::Idle;
                }
            }
        }
        // Wire up the reset
        self.mig.reset.next = self.reset.val();
        // We don't use the mask input
        self.mig.p0_wr.mask.next = 0_usize.into();
        // Set the status byte
        self.status.next = bit_cast::<8, 1>(self.mig.p0_wr.error.val().into())
            | (bit_cast::<8, 1>(self.mig.p0_wr.underrun.val().into()) << 1_usize)
            | (bit_cast::<8, 1>(self.mig.p0_cmd.full.val().into()) << 2_usize)
            | (bit_cast::<8, 1>(self.mig.p0_rd.error.val().into()) << 3_usize)
            | (bit_cast::<8, 1>(self.mig.p0_rd.overflow.val().into()) << 4_usize)
            | (bit_cast::<8, 1>(self.have_data.val().into()) << 5_usize);
    }
}

#[test]
fn test_ddr_fifo_gen() {
    let ddr = DDRFIFO::default();
    let vlog = generate_verilog_unchecked(&ddr);
    println!("{}", vlog);
}