1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
use crate::core::prelude::*;
use crate::widgets::prelude::*;

#[derive(Copy, Clone, PartialEq, Debug, LogicState)]
pub enum BankState {
    Boot,
    Idle,
    Active,
    Reading,
    Precharging,
    Writing,
    Error,
    Autorefreshing,
    WriteRecovery,
}

// Bank state machine - a bank is simulated using BRAM.
// Tbis can be generalized later.  For now, we set the
// number of rows to 256, and the number of columns to 32
// That yields 8 row addresses, and 5 column addresses, for
// a total of 13 address bits.
#[derive(LogicBlock)]
pub struct MemoryBank<const R: usize, const C: usize, const A: usize, const D: usize> {
    // Constraint - A = R + C
    pub clock: Signal<In, Clock>,
    pub cas_delay: Signal<In, Bits<3>>,
    pub write_burst: Signal<In, Bit>,
    pub address: Signal<In, Bits<13>>,
    pub burst_len: Signal<In, Bits<4>>,
    pub cmd: Signal<In, SDRAMCommand>,
    pub error: Signal<Out, Bit>,
    pub busy: Signal<Out, Bit>,
    pub write_data: Signal<In, Bits<D>>,
    pub read_data: Signal<Out, Bits<D>>,
    pub read_valid: Signal<Out, Bit>,
    pub select: Signal<In, Bit>,
    delay_line: DelayLine<Bits<D>, 7, 3>,
    read_delay_line: DelayLine<Bit, 7, 3>,
    refresh_counter: DFF<Bits<32>>,
    refresh_active: DFF<Bit>,
    mem: RAM<Bits<D>, A>,
    write_reg: DFF<Bits<D>>,
    state: DFF<BankState>,
    auto_precharge: DFF<Bit>,
    active_row: DFF<Bits<R>>,
    burst_counter: DFF<Bits<4>>,
    active_col: DFF<Bits<C>>,
    delay_counter: DFF<Bits<32>>,
    t_activate: DFF<Bits<32>>,
    t_ras: Constant<Bits<32>>, // Min time from activate to precharge
    t_rc: Constant<Bits<32>>,  // Min time from active to activate
    t_rcd: Constant<Bits<32>>, // Min time from active to read/write
    t_rp: Constant<Bits<32>>,  // Precharge command time
    t_wr: Constant<Bits<32>>,  // Write recovery time
    t_refresh_max: Constant<Bits<32>>,
    t_rfc: Constant<Bits<32>>,
    row_shift: Constant<Bits<A>>,
}

impl<const R: usize, const C: usize, const A: usize, const D: usize> MemoryBank<R, C, A, D> {
    pub fn new(timings: MemoryTimings) -> Self {
        assert_eq!(R + C, A);
        let t_ras = timings.t_ras() - 1;
        let t_rc = timings.t_rc() - 1;
        let t_rcd = timings.t_rcd() - 1;
        let t_rp = timings.t_rp() - 1;
        let t_refresh_max = timings.t_refresh_max() - 1;
        let t_rfc = timings.t_rfc() - 1;
        let t_wr = timings.t_wr() - 1;
        Self {
            clock: Default::default(),
            cas_delay: Default::default(),
            write_burst: Default::default(),
            address: Default::default(),
            burst_len: Default::default(),
            cmd: Default::default(),
            error: Default::default(),
            busy: Default::default(),
            write_data: Default::default(),
            read_data: Default::default(),
            read_valid: Default::default(),
            select: Default::default(),
            delay_line: Default::default(),
            read_delay_line: Default::default(),
            mem: Default::default(),
            write_reg: Default::default(),
            state: Default::default(),
            auto_precharge: Default::default(),
            active_row: Default::default(),
            burst_counter: Default::default(),
            active_col: Default::default(),
            delay_counter: Default::default(),
            refresh_counter: Default::default(),
            refresh_active: Default::default(),
            t_activate: Default::default(),
            t_ras: Constant::new(t_ras.to_bits()),
            t_rc: Constant::new(t_rc.to_bits()),
            t_rcd: Constant::new(t_rcd.to_bits()),
            t_rp: Constant::new(t_rp.to_bits()),
            t_wr: Constant::new(t_wr.to_bits()),
            t_refresh_max: Constant::new(t_refresh_max.to_bits()),
            t_rfc: Constant::new(t_rfc.to_bits()),
            row_shift: Constant::new(C.to_bits()),
        }
    }
}

impl<const R: usize, const C: usize, const A: usize, const D: usize> Logic
    for MemoryBank<R, C, A, D>
{
    #[hdl_gen]
    fn update(&mut self) {
        // Clock the internal logic
        self.mem.read_clock.next = self.clock.val();
        self.mem.write_clock.next = self.clock.val();
        dff_setup!(
            self,
            clock,
            refresh_counter,
            refresh_active,
            write_reg,
            state,
            auto_precharge,
            active_row,
            burst_counter,
            active_col,
            delay_counter,
            t_activate
        );
        clock!(self, clock, delay_line, read_delay_line);
        self.delay_counter.d.next = self.delay_counter.q.val() + 1;
        self.error.next = false;
        // Model the row-column multiplexing
        self.mem.read_address.next = (bit_cast::<A, R>(self.active_row.q.val())
            << self.row_shift.val())
            | bit_cast::<A, C>(self.active_col.q.val());
        self.mem.write_address.next = (bit_cast::<A, R>(self.active_row.q.val())
            << self.row_shift.val())
            | bit_cast::<A, C>(self.active_col.q.val());
        self.write_reg.d.next = self.write_data.val();
        self.mem.write_data.next = self.write_reg.q.val();
        self.mem.write_enable.next = false;
        self.delay_line.data_in.next = self.mem.read_data.val();
        self.read_data.next = self.delay_line.data_out.val();
        self.delay_line.delay.next = self.cas_delay.val() - 2;
        // Start counting cycles for how long the row is active
        self.t_activate.d.next = self.t_activate.q.val() + 1;
        self.busy.next = true;
        self.read_delay_line.data_in.next = false;
        self.read_delay_line.delay.next = self.cas_delay.val() - 1;
        self.read_valid.next = self.read_delay_line.data_out.val();
        self.refresh_counter.d.next = self.refresh_counter.q.val() + self.refresh_active.q.val();
        match self.state.q.val() {
            BankState::Boot => {
                self.t_activate.d.next = 0xFFFF.into();
                self.state.d.next = BankState::Idle;
            }
            BankState::Idle => {
                self.busy.next = false;
                if self.select.val() {
                    match self.cmd.val() {
                        SDRAMCommand::Active => {
                            // Reset the activate timer
                            if self.t_activate.q.val() < self.t_rc.val() {
                                self.state.d.next = BankState::Error;
                            } else {
                                self.t_activate.d.next = 0.into();
                                // Activate the given row.
                                // Load the row into the row register
                                self.active_row.d.next = self.address.val().get_bits::<R>(0);
                                // Reset the delay timer
                                self.delay_counter.d.next = 0.into();
                                // Transition to the activating state.
                                self.state.d.next = BankState::Active;
                            }
                        }
                        SDRAMCommand::NOP => {}
                        SDRAMCommand::Precharge => {} // See ISSI docs.  Precharging an idle bank is a NOP
                        SDRAMCommand::AutoRefresh => {
                            if self.refresh_active.q.val()
                                & (self.refresh_counter.q.val() < self.t_rc.val())
                            {
                                self.state.d.next = BankState::Error;
                            } else {
                                self.state.d.next = BankState::Autorefreshing;
                                self.refresh_active.d.next = true;
                                self.refresh_counter.d.next = 0.into();
                            }
                        } // Handled at the chip level
                        SDRAMCommand::LoadModeRegister => {} // Ignored by banks
                        _ => {
                            self.state.d.next = BankState::Error;
                        }
                    }
                }
            }
            BankState::Active => {
                if self.select.val() {
                    match self.cmd.val() {
                        SDRAMCommand::NOP => {}
                        SDRAMCommand::Read => {
                            if self.t_activate.q.val() < self.t_rcd.val() {
                                self.state.d.next = BankState::Error;
                            } else {
                                // RCD is met, we want to read
                                self.active_col.d.next = self.address.val().get_bits::<C>(0);
                                self.burst_counter.d.next = 0.into();
                                self.state.d.next = BankState::Reading;
                                // Capture the auto precharge bit (bit 10) - this is the per the JEDEC spec
                                self.auto_precharge.d.next = self.address.val().get_bit(10);
                            }
                        }
                        SDRAMCommand::Write => {
                            if self.t_activate.q.val() < self.t_rcd.val() {
                                self.state.d.next = BankState::Error;
                            } else {
                                // RCD is met, we want to write
                                self.active_col.d.next = self.address.val().get_bits::<C>(0);
                                self.burst_counter.d.next = 0.into();
                                self.state.d.next = BankState::Writing;
                                // Capture the auto precharge bit (bit 10) - this is the per the JEDEC spec
                                self.auto_precharge.d.next = self.address.val().get_bit(10);
                            }
                        }
                        SDRAMCommand::Precharge => {
                            if self.t_activate.q.val() < self.t_ras.val() {
                                self.state.d.next = BankState::Error;
                            } else {
                                // RAS is met, we can close the current row
                                self.delay_counter.d.next = 0.into();
                                self.state.d.next = BankState::Precharging;
                            }
                        }
                        _ => {
                            self.state.d.next = BankState::Error;
                        }
                    }
                }
            }
            BankState::Reading => {
                // Process the read command
                self.burst_counter.d.next = self.burst_counter.q.val() + 1;
                self.active_col.d.next = self.active_col.q.val() + 1;
                self.read_delay_line.data_in.next = true;
                // Did the read finish?
                if self.burst_counter.q.val() == self.burst_len.val() {
                    self.read_delay_line.data_in.next = false;
                    if self.auto_precharge.q.val() {
                        self.delay_counter.d.next = 0.into();
                        self.state.d.next = BankState::Precharging;
                    } else {
                        self.state.d.next = BankState::Active
                    }
                }
                if self.select.val() {
                    match self.cmd.val() {
                        SDRAMCommand::NOP => {}
                        SDRAMCommand::Read => {
                            // RCD is met, we want to read
                            self.active_col.d.next = self.address.val().get_bits::<C>(0);
                            self.burst_counter.d.next = 0.into();
                            // Capture the auto precharge bit (bit 10) - this is the per the JEDEC spec
                            self.auto_precharge.d.next = self.address.val().get_bit(10);
                            self.state.d.next = BankState::Reading;
                        }
                        SDRAMCommand::Precharge => {
                            if self.auto_precharge.q.val() {
                                self.state.d.next = BankState::Error;
                            } else {
                                self.delay_counter.d.next = 0.into();
                                self.state.d.next = BankState::Precharging;
                            }
                        }
                        _ => {
                            self.state.d.next = BankState::Error;
                        }
                    }
                }
            }
            BankState::Precharging => {
                if self.delay_counter.q.val() == self.t_rp.val() {
                    self.state.d.next = BankState::Idle;
                }
                if self.select.val() {
                    match self.cmd.val() {
                        SDRAMCommand::NOP => {}
                        _ => {
                            self.state.d.next = BankState::Error;
                        }
                    }
                }
            }
            BankState::Autorefreshing => {
                if self.refresh_counter.q.val() == self.t_rfc.val() {
                    self.state.d.next = BankState::Idle;
                }
                if self.select.val() {
                    match self.cmd.val() {
                        SDRAMCommand::NOP => {}
                        _ => {
                            self.state.d.next = BankState::Error;
                        }
                    }
                }
            }
            BankState::Writing => {
                self.mem.write_enable.next = true;
                // Process the write command
                self.burst_counter.d.next = self.burst_counter.q.val() + 1;
                self.active_col.d.next = self.active_col.q.val() + 1;
                // Did the write finish?
                if self.burst_counter.q.val() == self.burst_len.val() - 1 {
                    self.delay_counter.d.next = 0.into();
                    if self.auto_precharge.q.val() {
                        self.state.d.next = BankState::Precharging;
                    } else {
                        self.state.d.next = BankState::WriteRecovery
                    }
                }
                if self.select.val() {
                    match self.cmd.val() {
                        SDRAMCommand::NOP => {}
                        SDRAMCommand::Write => {
                            self.active_col.d.next = self.address.val().get_bits::<C>(0);
                            self.burst_counter.d.next = 0.into();
                            // Capture the auto precharge bit (bit 10) - this is the per the JEDEC spec
                            self.auto_precharge.d.next = self.address.val().get_bit(10);
                            self.state.d.next = BankState::Writing;
                        }
                        SDRAMCommand::Precharge => {
                            if self.auto_precharge.q.val() {
                                self.state.d.next = BankState::Error;
                            } else {
                                self.delay_counter.d.next = 0.into();
                                self.state.d.next = BankState::Precharging;
                            }
                        }
                        _ => {
                            self.state.d.next = BankState::Error;
                        }
                    }
                }
            }
            BankState::Error => {
                self.error.next = true;
            }
            BankState::WriteRecovery => {
                if self.delay_counter.q.val() == self.t_wr.val() {
                    self.state.d.next = BankState::Active;
                }
                match self.cmd.val() {
                    SDRAMCommand::NOP => {}
                    SDRAMCommand::Read => {
                        self.active_col.d.next = self.address.val().get_bits::<C>(0);
                        self.burst_counter.d.next = 0.into();
                        self.state.d.next = BankState::Reading;
                        // Capture the auto precharge bit (bit 10) - this is the per the JEDEC spec
                        self.auto_precharge.d.next = self.address.val().get_bit(10);
                    }
                    SDRAMCommand::Write => {
                        self.active_col.d.next = self.address.val().get_bits::<C>(0);
                        self.burst_counter.d.next = 0.into();
                        self.state.d.next = BankState::Writing;
                        // Capture the auto precharge bit (bit 10) - this is the per the JEDEC spec
                        self.auto_precharge.d.next = self.address.val().get_bit(10);
                    }
                    _ => {
                        self.state.d.next = BankState::Error;
                    }
                }
            }
            _ => {
                self.state.d.next = BankState::Boot;
            }
        }
        if self.refresh_counter.q.val() >= self.t_refresh_max.val() {
            self.state.d.next = BankState::Error;
        }
    }
}

// For test purposes, we run the clock a lot faster...
#[cfg(test)]
fn mk_bank_sim() -> MemoryBank<5, 5, 10, 16> {
    let mut uut = MemoryBank::new(MemoryTimings::mt48lc8m16a2(500e6));
    uut.address.connect();
    uut.cmd.connect();
    uut.clock.connect();
    uut.cas_delay.connect();
    uut.write_burst.connect();
    uut.burst_len.connect();
    uut.write_data.connect();
    uut.select.connect();
    uut.connect_all();
    uut.burst_len.next = 8.into();
    uut.write_burst.next = true;
    uut.cas_delay.next = 3.into();
    uut.cmd.next = SDRAMCommand::NOP;
    uut.select.next = true;
    uut
}

#[test]
fn test_bank_sim_synthesizes() {
    let uut = mk_bank_sim();
    let vlog = generate_verilog(&uut);
    yosys_validate("sdram_bank", &vlog).unwrap();
}

#[test]
fn test_bank_activation_immediate_close_is_ok_with_delay() {
    let uut = mk_bank_sim();
    let mut sim = Simulation::new();
    // Clock period is 500 MHz or 2000ps
    let clock_period = 2000;
    sim.add_clock(clock_period / 2, |x: &mut Box<MemoryBank<5, 5, 10, 16>>| {
        x.clock.next = !x.clock.val();
    });
    sim.add_testbench(move |mut sim: Sim<MemoryBank<5, 5, 10, 16>>| {
        let mut x = sim.init()?;
        let timing = MemoryTimings::mt48lc8m16a2(500e6);

        wait_clock_true!(sim, clock, x);
        wait_clock_cycles!(sim, clock, x, 30);
        x.cmd.next = SDRAMCommand::Active;
        x.address.next = 14.into();
        wait_clock_cycle!(sim, clock, x);
        let start_time = sim.time();
        // Insert enough NOPS to meet the Active-to-precharge-time
        // Allow for 1 clock delay while loading the precharge time
        let wait_for_precharge =
            timing.t_ras_row_active_min_time_nanoseconds * 1000.0 - clock_period as f64;
        while sim.time() - start_time < wait_for_precharge as u64 {
            x.cmd.next = SDRAMCommand::NOP;
            wait_clock_cycle!(sim, clock, x);
        }
        x.cmd.next = SDRAMCommand::Precharge;
        wait_clock_cycle!(sim, clock, x);
        let start_time = sim.time();
        let precharge_time = timing.t_rp_recharge_period_nanoseconds * 1000.0 - clock_period as f64;
        while sim.time() - start_time < precharge_time as u64 {
            x.cmd.next = SDRAMCommand::NOP;
            wait_clock_cycle!(sim, clock, x);
            sim_assert!(sim, x.state.q.val() != BankState::Idle, x);
        }
        wait_clock_cycle!(sim, clock, x);
        sim_assert_eq!(sim, x.state.q.val(), BankState::Idle, x);
        wait_clock_cycle!(sim, clock, x, 10);
        sim_assert!(sim, !x.error.val(), x);
        sim.done(x)
    });
    sim.run(Box::new(uut), 1_000_000).unwrap();
}

#[test]
fn test_bank_activation_immediate_close_fails_for_timing() {
    let uut = mk_bank_sim();
    let mut sim = Simulation::new();
    // Clock period is 500 MHz or 2000ps
    let clock_period = 2000;
    sim.add_clock(clock_period / 2, |x: &mut Box<MemoryBank<5, 5, 10, 16>>| {
        x.clock.next = !x.clock.val();
    });
    sim.add_testbench(move |mut sim: Sim<MemoryBank<5, 5, 10, 16>>| {
        let mut x = sim.init()?;
        let timing = MemoryTimings::mt48lc8m16a2(500e6);

        wait_clock_true!(sim, clock, x);
        wait_clock_cycle!(sim, clock, x);
        x.cmd.next = SDRAMCommand::Active;
        x.address.next = 14.into();
        wait_clock_cycle!(sim, clock, x);
        let start_time = sim.time();
        // Insert enough NOPS to meet the Active-to-precharge-time
        // Allow for 1 clock delay while loading the precharge time
        // Advance by 1 more clock so it fails
        let wait_for_precharge =
            (timing.t_ras_row_active_min_time_nanoseconds * 1000.0) as u64 - clock_period * 2;
        while sim.time() - start_time < wait_for_precharge as u64 {
            x.cmd.next = SDRAMCommand::NOP;
            wait_clock_cycle!(sim, clock, x);
        }
        x.cmd.next = SDRAMCommand::Precharge;
        wait_clock_cycle!(sim, clock, x);
        x.cmd.next = SDRAMCommand::NOP;
        wait_clock_cycle!(sim, clock, x, 10);
        sim_assert!(sim, x.error.val(), x);
        sim.done(x)
    });
    sim.run(Box::new(uut), 1_000_000).unwrap();
}

#[test]
fn test_bank_write() {
    let uut = mk_bank_sim();
    let mut sim = Simulation::new();
    // Clock period is 500 MHz or 2000ps
    let clock_period = 2000;
    sim.add_clock(clock_period / 2, |x: &mut Box<MemoryBank<5, 5, 10, 16>>| {
        x.clock.next = !x.clock.val();
    });
    let data = [
        0xABCD, 0xDEAD, 0xBEEF, 0x1234, 0xFACE, 0x5EA1, 0xCAFE, 0xBABE,
    ];
    sim.add_testbench(move |mut sim: Sim<MemoryBank<5, 5, 10, 16>>| {
        let mut x = sim.init()?;
        x = sim.watch(
            |x| x.clock.val().clk & (x.cmd.val() == SDRAMCommand::Read),
            x,
        )?;
        let cas_start_time = sim.time();
        x = sim.watch(|x| x.clock.val().clk & x.read_valid.val(), x)?;
        let cas_end_time = sim.time();
        sim_assert!(
            sim,
            (cas_end_time - cas_start_time) == (x.cas_delay.val().index() as u64) * clock_period,
            x
        );
        sim.done(x)
    });
    sim.add_testbench(move |mut sim: Sim<MemoryBank<5, 5, 10, 16>>| {
        let mut x = sim.init()?;
        for _ in 0..2 {
            x = sim.watch(|x| !x.clock.val().clk & x.read_valid.val(), x)?;
            for val in &data {
                sim_assert!(sim, x.read_data.val() == *val, x);
                wait_clock_cycle!(sim, clock, x);
            }
        }
        sim.done(x)
    });
    sim.add_testbench(move |mut sim: Sim<MemoryBank<5, 5, 10, 16>>| {
        let mut x = sim.init()?;
        let timing = MemoryTimings::mt48lc8m16a2(500e6);

        wait_clock_true!(sim, clock, x);
        wait_clock_cycles!(sim, clock, x, 30);
        x.cmd.next = SDRAMCommand::Active;
        x.address.next = 14.into();
        wait_clock_cycle!(sim, clock, x);
        let start_time = sim.time();
        // Insert enough NOPS to meet the Active-to-write-time
        // Allow for 1 clock delay while loading the write command
        let wait_for_active =
            (timing.t_rcd_row_to_column_min_time_nanoseconds * 1000.0) as u64 - clock_period;
        while sim.time() - start_time < wait_for_active as u64 {
            x.cmd.next = SDRAMCommand::NOP;
            wait_clock_cycle!(sim, clock, x);
        }
        x.cmd.next = SDRAMCommand::Write;
        x.write_data.next = data[0].into();
        x.address.next = 0.into();
        wait_clock_cycle!(sim, clock, x);
        for datum in data.iter().skip(1) {
            x.cmd.next = SDRAMCommand::NOP;
            x.write_data.next = (*datum).into();
            wait_clock_cycle!(sim, clock, x);
        }
        x.cmd.next = SDRAMCommand::NOP;
        wait_clock_cycles!(sim, clock, x, 10);
        // Read the data back out
        x.cmd.next = SDRAMCommand::Read;
        x.address.next = 0.into();
        wait_clock_cycle!(sim, clock, x);
        x.cmd.next = SDRAMCommand::NOP;
        wait_clock_cycles!(sim, clock, x, 8);
        // Read the data back out - with auto precharge
        x.cmd.next = SDRAMCommand::Read;
        x.address.next = 1024.into();
        wait_clock_cycle!(sim, clock, x);
        x.cmd.next = SDRAMCommand::NOP;
        wait_clock_cycles!(sim, clock, x, 10);
        let precharge_clocks = timing.t_rp();
        wait_clock_cycles!(sim, clock, x, precharge_clocks);
        sim_assert!(sim, !x.busy.val(), x);
        sim_assert!(sim, !x.error.val(), x);
        sim.done(x)
    });
    sim.run_to_file(Box::new(uut), 1_000_000, &vcd_path!("sdram_write.vcd"))
        .unwrap();
}