1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
use crate::core::prelude::*;
use crate::dff_setup;
use crate::widgets::dff::DFF;
use crate::widgets::prelude::{DelayLine, MemoryTimings};
use crate::widgets::sdram::cmd::{SDRAMCommand, SDRAMCommandEncoder};
use crate::widgets::sdram::{OutputBuffer, SDRAMDriver};
#[derive(Copy, Clone, PartialEq, Debug, LogicState)]
enum State {
    Boot,
    Precharge1,
    AutoRefresh1,
    AutoRefresh2,
    LoadModeRegister,
    Idle,
    IssueRead,
    IssueWrite,
    Refresh,
    ReadActivate,
    ReadCycle,
    WriteActivate,
    WriteCycle,
    Recovery,
    Precharge,
    Error,
}
#[derive(LogicBlock)]
pub struct SDRAMBaseController<const R: usize, const C: usize, const L: usize, const D: usize> {
    pub clock: Signal<In, Clock>,
    pub sdram: SDRAMDriver<D>,
    pub data_in: Signal<In, Bits<L>>,
    pub write_not_read: Signal<In, Bit>,
    pub cmd_strobe: Signal<In, Bit>,
    pub cmd_address: Signal<In, Bits<32>>,
    pub busy: Signal<Out, Bit>,
    pub data_out: Signal<Out, Bits<L>>,
    pub data_valid: Signal<Out, Bit>,
    pub error: Signal<Out, Bit>,
    cmd: Signal<Local, SDRAMCommand>,
    encode: SDRAMCommandEncoder,
    boot_delay: Constant<Bits<16>>,
    t_rp: Constant<Bits<16>>,
    t_rfc: Constant<Bits<16>>,
    t_refresh_max: Constant<Bits<16>>,
    t_rcd: Constant<Bits<16>>,
    t_wr: Constant<Bits<16>>,
    max_transfer_size: Constant<Bits<5>>,
    mode_register: Constant<Bits<13>>,
    cas_delay: Constant<Bits<3>>,
    state: DFF<State>,
    reg_data_write: DFF<Bits<L>>,
    reg_data_read: DFF<Bits<L>>,
    reg_address: DFF<Bits<32>>,
    reg_cmd_address: DFF<Bits<32>>,
    delay_counter: DFF<Bits<16>>,
    refresh_counter: DFF<Bits<16>>,
    transfer_counter: DFF<Bits<5>>,
    read_valid: DelayLine<Bit, 8, 3>,
    addr_bank: Signal<Local, Bits<2>>,
    addr_row: Signal<Local, Bits<13>>,
    addr_col: Signal<Local, Bits<13>>,
    write_pending: DFF<Bit>,
    read_pending: DFF<Bit>,
    read_ready: DFF<Bit>,
    refresh_needed: DFF<Bit>,
    row_bits: Constant<Bits<32>>,
    col_bits: Constant<Bits<32>>,
    data_bits: Constant<Bits<L>>,
    data_shift_in: Constant<Bits<L>>,
    data_out_counter: DFF<Bits<5>>,
}
impl<const R: usize, const C: usize, const L: usize, const D: usize>
    SDRAMBaseController<R, C, L, D>
{
    pub fn new(
        cas_delay: u32,
        timings: MemoryTimings,
        buffer: OutputBuffer,
    ) -> SDRAMBaseController<R, C, L, D> {
        assert_eq!(L % D, 0);
        assert!(L / D <= 16);
        assert_eq!((1 << C) % (L / D), 0);
        let mode_register = cas_delay << 4;
        Self {
            clock: Default::default(),
            sdram: Default::default(),
            cmd: Default::default(),
            data_in: Default::default(),
            write_not_read: Default::default(),
            cmd_strobe: Default::default(),
            cmd_address: Default::default(),
            busy: Default::default(),
            data_out: Default::default(),
            data_valid: Default::default(),
            error: Default::default(),
            boot_delay: Constant::new((timings.t_boot() + 50).to_bits()),
            t_rp: Constant::new((timings.t_rp()).to_bits()),
            t_rfc: Constant::new((timings.t_rfc()).to_bits()),
            t_refresh_max: Constant::new((timings.t_refresh_max() * 9 / 10).to_bits()),
            t_rcd: Constant::new((timings.t_rcd()).to_bits()),
            t_wr: Constant::new((timings.t_wr()).to_bits()),
            max_transfer_size: Constant::new({ L / D }.to_bits()),
            mode_register: Constant::new(mode_register.to_bits()),
            cas_delay: Constant::new(
                match buffer {
                    OutputBuffer::Wired => cas_delay,
                    OutputBuffer::DelayOne => cas_delay + 1,
                    OutputBuffer::DelayTwo => cas_delay + 2,
                }
                .to_bits(),
            ),
            state: Default::default(),
            reg_data_write: Default::default(),
            reg_data_read: Default::default(),
            reg_address: Default::default(),
            reg_cmd_address: Default::default(),
            delay_counter: Default::default(),
            refresh_counter: Default::default(),
            transfer_counter: Default::default(),
            read_valid: Default::default(),
            addr_bank: Default::default(),
            addr_row: Default::default(),
            addr_col: Default::default(),
            write_pending: Default::default(),
            row_bits: Constant::new(R.to_bits()),
            col_bits: Constant::new(C.to_bits()),
            data_bits: Constant::new(D.to_bits()),
            data_shift_in: Constant::new({ L - D }.to_bits()),
            read_pending: Default::default(),
            data_out_counter: Default::default(),
            read_ready: Default::default(),
            encode: Default::default(),
            refresh_needed: Default::default(),
        }
    }
}
impl<const R: usize, const C: usize, const L: usize, const D: usize> Logic
    for SDRAMBaseController<R, C, L, D>
{
    #[hdl_gen]
    fn update(&mut self) {
        dff_setup!(
            self,
            clock,
            state,
            reg_data_write,
            reg_data_read,
            reg_address,
            reg_cmd_address,
            delay_counter,
            refresh_counter,
            transfer_counter,
            write_pending,
            read_pending,
            read_ready,
            refresh_needed,
            data_out_counter
        );
        clock!(self, clock, read_valid);
        self.delay_counter.d.next = self.delay_counter.q.val() + 1;
        self.refresh_counter.d.next = self.refresh_counter.q.val() + 1;
        self.cmd.next = SDRAMCommand::NOP;
        self.sdram.address.next = 0.into();
        self.sdram.bank.next = 0.into();
        self.data_out.next = self.reg_data_read.q.val();
        self.data_out_counter.d.next =
            self.data_out_counter.q.val() + self.read_valid.data_out.val();
        self.data_valid.next = self.read_ready.q.val();
        self.sdram.write_enable.next = false;
        self.sdram.write_data.next = self.reg_data_write.q.val().get_bits::<D>(0);
        self.read_valid.data_in.next = false;
        self.read_valid.delay.next = self.cas_delay.val();
        self.addr_col.next = bit_cast::<13, C>(self.reg_address.q.val().get_bits::<C>(0));
        self.addr_row.next = bit_cast::<13, R>(
            self.reg_address
                .q
                .val()
                .get_bits::<R>(self.col_bits.val().index()),
        );
        self.addr_bank.next = self
            .reg_address
            .q
            .val()
            .get_bits::<2>(self.col_bits.val().index() + self.row_bits.val().index());
        self.transfer_counter.d.next = self.transfer_counter.q.val();
        self.busy.next = (self.state.q.val() != State::Idle)
            | self.write_pending.q.val()
            | self.read_pending.q.val();
        match self.state.q.val() {
            State::Boot => {
                if self.delay_counter.q.val() == self.boot_delay.val() {
                    self.state.d.next = State::Precharge1;
                    self.cmd.next = SDRAMCommand::Precharge;
                    self.sdram.address.next = 0xFFF.into();
                    self.delay_counter.d.next = 0.into();
                }
            }
            State::Precharge1 => {
                if self.delay_counter.q.val() == self.t_rp.val() {
                    self.state.d.next = State::AutoRefresh1;
                    self.cmd.next = SDRAMCommand::AutoRefresh;
                    self.delay_counter.d.next = 0.into();
                }
            }
            State::AutoRefresh1 => {
                if self.delay_counter.q.val() == self.t_rfc.val() {
                    self.state.d.next = State::AutoRefresh2;
                    self.cmd.next = SDRAMCommand::AutoRefresh;
                    self.delay_counter.d.next = 0.into();
                }
            }
            State::AutoRefresh2 => {
                if self.delay_counter.q.val() == self.t_rfc.val() {
                    self.state.d.next = State::LoadModeRegister;
                    self.cmd.next = SDRAMCommand::LoadModeRegister;
                    self.sdram.address.next = self.mode_register.val();
                    self.delay_counter.d.next = 0.into();
                }
            }
            State::LoadModeRegister => {
                if self.delay_counter.q.val() == 4 {
                    self.state.d.next = State::Idle;
                }
            }
            State::Idle => {
                self.delay_counter.d.next = 0.into();
                self.transfer_counter.d.next = 0.into();
                if self.refresh_needed.q.val() {
                    self.cmd.next = SDRAMCommand::AutoRefresh;
                    self.state.d.next = State::Refresh;
                    self.refresh_counter.d.next = 0.into();
                    self.refresh_needed.d.next = false;
                } else if self.read_pending.q.val() {
                    self.reg_address.d.next = self.reg_cmd_address.q.val();
                    self.state.d.next = State::IssueRead;
                } else if self.write_pending.q.val() {
                    self.reg_address.d.next = self.reg_cmd_address.q.val();
                    self.state.d.next = State::IssueWrite;
                }
            }
            State::IssueRead => {
                self.cmd.next = SDRAMCommand::Active;
                self.sdram.bank.next = self.addr_bank.val();
                self.sdram.address.next = self.addr_row.val();
                self.state.d.next = State::ReadActivate;
                self.read_pending.d.next = false;
                self.data_out_counter.d.next = 0.into();
            }
            State::IssueWrite => {
                self.cmd.next = SDRAMCommand::Active;
                self.sdram.bank.next = self.addr_bank.val();
                self.sdram.address.next = self.addr_row.val();
                self.state.d.next = State::WriteActivate;
                self.write_pending.d.next = false;
                self.sdram.write_enable.next = true;
            }
            State::Refresh => {
                if self.delay_counter.q.val() == self.t_rfc.val() {
                    self.state.d.next = State::Idle;
                }
            }
            State::ReadActivate => {
                if self.delay_counter.q.val() == self.t_rcd.val() {
                    self.state.d.next = State::ReadCycle;
                    self.transfer_counter.d.next = 0.into();
                }
            }
            State::WriteActivate => {
                self.sdram.write_enable.next = true;
                if self.delay_counter.q.val() == self.t_rcd.val() {
                    self.state.d.next = State::WriteCycle;
                    self.transfer_counter.d.next = 0.into();
                }
            }
            State::WriteCycle => {
                self.sdram.write_enable.next = true;
                if self.transfer_counter.q.val() < self.max_transfer_size.val() {
                    self.sdram.bank.next = self.addr_bank.val();
                    self.sdram.address.next = self.addr_col.val();
                    self.cmd.next = SDRAMCommand::Write;
                    self.transfer_counter.d.next = self.transfer_counter.q.val() + 1;
                    self.reg_data_write.d.next =
                        self.reg_data_write.q.val() >> self.data_bits.val();
                    self.reg_address.d.next = self.reg_address.q.val() + 1;
                } else {
                    self.delay_counter.d.next = 0.into();
                    self.state.d.next = State::Recovery;
                }
            }
            State::Recovery => {
                self.sdram.write_enable.next = true;
                if self.delay_counter.q.val() == self.t_wr.val() {
                    self.cmd.next = SDRAMCommand::Precharge;
                    self.sdram.address.next = 0x1FFF.into();
                    self.delay_counter.d.next = 0.into();
                    self.state.d.next = State::Precharge;
                }
            }
            State::Precharge => {
                if self.delay_counter.q.val() == self.t_rp.val() {
                    self.state.d.next = State::Idle;
                }
            }
            State::ReadCycle => {
                if self.transfer_counter.q.val() < self.max_transfer_size.val() {
                    self.sdram.bank.next = self.addr_bank.val();
                    self.sdram.address.next = self.addr_col.val();
                    self.cmd.next = SDRAMCommand::Read;
                    self.transfer_counter.d.next = self.transfer_counter.q.val() + 1;
                    self.read_valid.data_in.next = true;
                    self.reg_address.d.next = self.reg_address.q.val() + 1;
                } else {
                    self.delay_counter.d.next = 0.into();
                    self.state.d.next = State::Recovery;
                }
            }
            State::Error => {}
            _ => {
                self.state.d.next = State::Boot;
            }
        }
        self.error.next = self.state.q.val() == State::Error;
        if self.cmd_strobe.val() & !self.read_pending.q.val() & !self.write_pending.q.val() {
            self.reg_cmd_address.d.next = self.cmd_address.val();
            if self.write_not_read.val() {
                self.write_pending.d.next = true;
                self.reg_data_write.d.next = self.data_in.val();
            } else {
                self.read_pending.d.next = true;
            }
        }
        if self.read_valid.data_out.val() {
            self.reg_data_read.d.next = bit_cast::<L, D>(self.sdram.read_data.val())
                << self.data_shift_in.val()
                | (self.reg_data_read.q.val() >> self.data_bits.val());
        }
        self.read_ready.d.next = !self.read_ready.q.val()
            & (self.data_out_counter.q.val() == self.max_transfer_size.val());
        if self.read_ready.q.val() {
            self.data_out_counter.d.next = 0.into();
        }
        if self.refresh_counter.q.val() >= self.t_refresh_max.val() {
            self.refresh_needed.d.next = true;
        }
        self.sdram.cs_not.next = self.encode.cs_not.val();
        self.sdram.cas_not.next = self.encode.cas_not.val();
        self.sdram.ras_not.next = self.encode.ras_not.val();
        self.sdram.we_not.next = self.encode.we_not.val();
        self.encode.cmd.next = self.cmd.val();
        self.sdram.clk.next = self.clock.val();
    }
}